优点:伸展树(splay tree)是一种能自我调整的二叉搜索树(BST)。虽然某一次的访问操作所花费的时间比较长,但是平摊(amortized) 之后的访问操作(例如旋转)时间能达到O(logn)的复杂度。对于某一个被访问的节点,在接下来的一段时间内再次频繁访问它(90%的情况下是这样的,即符合90-10规则,类似于CPU内或磁盘的cache设计原理)的应用模式来说,伸展树是一种很理想的数据结构。另外一点与其他平衡二叉树的区别是,伸展树不需要存储任何像AVL树中平衡因子(balance factor)那样的平衡信息,可以节省空间的开销。

缺点:不像其他平衡二叉树那样即使最坏情况下也能达到O(logn)访问时间,它的最坏情况下只有O(n),跟单向链表一样。另外,伸展树的查找操作会修改树的结构,这与普通意义上的查找为只读操作习惯不太一样。

实现方式:伸展树的实现有两种方式,一是自底向上(bottom-up),另外一种是自顶向下(top-down)。

考虑到实现的难易程度,自顶向下的实现方式比较简单,因为自底向上需要保存已经被访问的节点,而自顶向下可以在搜索的过程中同时完成splay操作。

虽然两者得出的树结构不太一样,但是它们的平摊时间复杂度都是O(logn)。两种实现的基本操作就是splay,splay将最后被访问到的节点提升为根节点。

在自顶向下(top-down)的实现中,需要将输入的树拆成三颗树,分别为左树L,中树M和右树R。其中M树维护当前还未被访问到的节点,L树中所有节点的值都小于M树中的任何节点值,R树中所有节点的值都大于M树中的任何节点值。L树中只需要知道当前的最大节点 (leftTreeMax),而R树中只需要知道当前的最小节点(rightTreeMin)。左右两棵树的根节点分别可以通过nullNode节点(它是leftTreeMax和rightTreeMin的初始值,而且splay过程中变量nullNode本身未变化,只改变它的左右孩子节点)的右和左孩子节点得到,因为leftTreeMax中加入一个新的节点或子树时都是将新的节点作为leftTreeMax的右孩子,而不是左孩子(注意这里的顺序),rightTreeMin跟leftTreeMax相反。自顶向下的zig-zig或zag-zag需要做旋转操作,zig-zig的旋转操作叫rotationWithLeftChild,旋转后目标节点的父节点和祖父节点加入R树,zag-zag的旋转操作叫rotationWithRightChild,旋转后目标节点的父节点和祖父节点加入L树。另外zig-zag或zag-zig可以分别简化为zig或zag操作,这样可以将zig-zag和zig合二为一,从而只需考虑一种情况,而不需要将两种情况单独考虑。zig操作将目标节点的父节点加入R树,zag操作将目标节点的父节点加入L树。注意L和R树中每次加入新节点都需更新变量leftTreeMax或rightTreeMin。自顶向下splay操作的最后一步是重组(re-assemble):将M树的左孩子设置为L树的根节点,将M树的右孩子设置为R树的根节点,然后M树原来的左孩子成为leftTreeMax的右孩子,M树原来的右孩子成为rightTreeMin的左孩子。

注:rotationWithRightChild和rotationWithLeftChild的实现省略。

以下是类定义

 #ifndef _splaytree_h_
#define _splaytree_h_ template<typename Comparable>
class SplayTree
{
public:
SplayTree()
{
nullNode = new BinaryNode;
nullNode->left = nullNode->right = nullNode;
root = nullNode;
} ~SplayTree()
{
makeEmpty();
delete nullNode;
} SplayTree(const Splay& rhs);
const SplayTree& operator=(const SplayTree&rhs);
   // 此处省略操作方法 private:
struct BinaryNode
{
Comparable element;
BinaryNode *left;
BinaryNode *right; BinaryNode(const Comparable& theElement, BinaryNode *lt, BinaryNode* rt) :element(theElement), left(lt), right(rt){}
}; BinaryNode *root;
BinaryNode *nullNode;
// Internal method to perform a top-down splay.
void insert(const Comparable& x, BinaryNode*&t)const;
void remove(const Comparable& x, BinaryNode*&t)const;
BinaryNode* findMin(BinaryNode* t)const;
BinaryNode* findMax(BinaryNode* t)const;
bool contains(const Comparable&x, BinaryNode*t)const;
void makeEmpty(BinaryNode*&t);
void printTree(BinaryNode*t)const;
BinaryNode* clone(BinaryNode*t)const; void rotationWithLeftChild(BinaryNode*&k2);
void rotationWithRightChild(BinaryNode*& k1);
void splay(const Comparable& x, BinaryNode *&t);
}; #endif

接着splay的实现: 1 #include"splaytree.h"


template<typename Comparable>
void SplayTree<Comparable>::splay(const Comparable& x, BinaryNode*& t)
{
BinaryNode *leftTreeMax, *rightTreeMin;
static BinaryNode header; header.left = header.right = nullNode; //nullNode逻辑上表示一个NULL指针
leftTreeMax = rightTreeMin = &header; nullNode->element = x; //guarantee a match. for (;;)
if (x < t->element)
{
if ((x < t->left->element))
rotationWithLeftChild(t);
if (t->left == nullNode)
break;
            // Link Right
rightTreeMin->left = t;
rightTreeMin = t;
t = t->left;
}
else if (t->element < x)
{
if (t->right->element < x)
rotationWithRightChild(t);
if (t->right == nullNode)
break;
            // Link Left
leftTreeMax->right = t;
leftTreeMax = t;
t = t->right;
}
else
break; leftTreeMax->right = t->left;
rightTreeMin->left = t->right;
t->left = header.right;
t->right = header.left;
}

header.left和header.right分别引用R和L的根。(这不是输入错误,而是遵守链的指向)

 void insert(const Comparable& x)
{
static BinaryNode* newNode = NULL;
if (newNode == NULL)
newNode = new BinaryNode;
newNode->element = x; if (root == nullNode)
{
newNode->left = newNode->right = nullNode;
root = newNode;
}
else
{
splay(x, root);
if (x < root->element)
{
newNode->left = root->right;
newNode->right = root;
root->left = nullNode;
root = newNode;
}
else if (root->element < x)
{
newNode->right = root->right;
newNode.left = root;
root->right = nullNode;
root = newNode;
}
else
return;
}
newNode = NULL; // So next insert will call new.
}

remove和makeEmpty的实现:

 void remove(const Comparable& x)
{
BinaryNode *newNode;
splay(x, root);
if (root->element != x)
return;
if (root->left == nullNode)
newTree = root->right;
else
{
newTree = root->left;
splay(x, newTree); // 在左子树中寻找最大的项,把它伸展到根部
newTree->right = root->right; //连接右子树
}
delete root;
root = newTree;
} void makeEmpty()
{
whiel(!isEmpty())
{
findMax();
remove(root->element);
}
}

伸展树(SplayTree)的实现的更多相关文章

  1. 伸展树(三)之 Java的实现

    概要 前面分别通过C和C++实现了伸展树,本章给出伸展树的Java版本.基本算法和原理都与前两章一样.1. 伸展树的介绍2. 伸展树的Java实现(完整源码)3. 伸展树的Java测试程序 转载请注明 ...

  2. K:伸展树(splay tree)

      伸展树(Splay Tree),也叫分裂树,是一种二叉排序树,它能在O(lgN)内完成插入.查找和删除操作.在伸展树上的一般操作都基于伸展操作:假设想要对一个二叉查找树执行一系列的查找操作,为了使 ...

  3. SplayTree伸展树的非递归实现(自底向上)

    Splay Tree 是二叉查找树的一种,它与平衡二叉树.红黑树不同的是,Splay Tree从不强制地保持自身的平衡,每当查找到某个节点n的时候,在返回节点n的同时,Splay Tree会将节点n旋 ...

  4. [SinGuLaRiTy] SplayTree 伸展树

    [SinGuLaRiTy-1010]Copyrights (c) SinGuLaRiTy 2017. All Rights Reserved. Some Method Are Reprinted Fr ...

  5. 伸展树(一)之 图文解析 和 C语言的实现

    概要 本章介绍伸展树.它和"二叉查找树"和"AVL树"一样,都是特殊的二叉树.在了解了"二叉查找树"和"AVL树"之后, ...

  6. 伸展树(二)之 C++的实现

    概要 上一章介绍了伸展树的基本概念,并通过C语言实现了伸展树.本章是伸展树的C++实现,后续再给出Java版本.还是那句老话,它们的原理都一样,择其一了解即可. 目录1. 伸展树的介绍2. 伸展树的C ...

  7. PHP算法 《树形结构》 之 伸展树(1) - 基本概念

    伸展树的介绍 1.出处:http://dongxicheng.org/structure/splay-tree/ A. 概述 二叉查找树(Binary Search Tree,也叫二叉排序树,即Bin ...

  8. [置顶] hdu 1890 伸展树区间翻转

    题意: 给你n个数,每次先输出第i大的数的位置(如果有多个,选下标小的那个),然后每次将第i个位置到第i大的数所在位置之间的数进行翻转. 思路:输入的数组可能有多个相同的值,我们可以进行两次排序把数组 ...

  9. Hdu3487-Play with Chain(伸展树分裂合并)

    Problem Description YaoYao is fond of playing his chains. He has a chain containing n diamonds on it ...

随机推荐

  1. Java并发--阻塞队列

    在前面几篇文章中,我们讨论了同步容器(Hashtable.Vector),也讨论了并发容器(ConcurrentHashMap.CopyOnWriteArrayList),这些工具都为我们编写多线程程 ...

  2. BZOJ2131 免费的馅饼【线段树优化DP】

    Input 第一行是用空格隔开的二个正整数,分别给出了舞台的宽度W(1到10^8之间)和馅饼的个数n(1到10^5). 接下来n行,每一行给出了一块馅饼的信息.由三个正整数组成,分别表示了每个馅饼落到 ...

  3. Hive SQL的编译过程[转载自https://tech.meituan.com/hive-sql-to-mapreduce.html]

    https://tech.meituan.com/hive-sql-to-mapreduce.html Hive是基于Hadoop的一个数据仓库系统,在各大公司都有广泛的应用.美团数据仓库也是基于Hi ...

  4. scrapy爬取验证码登录网页

    scrapy 验证码登录程序, https://accounts.douban.com/login # -*- coding: utf-8 -*- import scrapy import urlli ...

  5. 后缀数组模板/LCP模板

    //后缀数组模板,MANX为数组的大小 //支持的操作有计算后缀数组(sa数组), 计算相邻两元素的最长公共前缀(height数组),使用get_height(); //计算两个后缀a, 和b的最长公 ...

  6. parceljs 基本使用———又一个前端构建工具

    备注:      又一个新的前端构建工具 1. 安装 yarn global add parcel-bundler 2. 初始化项目 yarn init -y 3. 基本代码 a. 创建 index. ...

  7. Oracle在线新增索引

    Oracle新增索引语法很简单,如果是普通索引的话: create Index IDX_T_WLF on T_WLF(ACTIVITYID,ACTIVETIME) tablespace TBS_VCO ...

  8. Jenkins的项目管理

    新建Item 使用Jenkins最重要的是能够创建一些工作流,除了部署,还能做很多流程上的事情.同样,一条条项目建起来需要做一定的管理,在Jenkins首页Jenkins->新建可以按自己的需要 ...

  9. 数据结构与算法JavaScript描述——列表

    1.列表的抽象数据类型定义   2.实现列表类: 2.1 append:给列表添加元素: 2.2 remove: 从列表中删除元素: 2.3 find方法: 2.4 length:列表中有多少个元素: ...

  10. java web 程序---注册页面密码验证

    <%@ page language="java" import="java.util.*" pageEncoding="gb2312" ...