伸展树(SplayTree)的实现
优点:伸展树(splay tree)是一种能自我调整的二叉搜索树(BST)。虽然某一次的访问操作所花费的时间比较长,但是平摊(amortized) 之后的访问操作(例如旋转)时间能达到O(logn)的复杂度。对于某一个被访问的节点,在接下来的一段时间内再次频繁访问它(90%的情况下是这样的,即符合90-10规则,类似于CPU内或磁盘的cache设计原理)的应用模式来说,伸展树是一种很理想的数据结构。另外一点与其他平衡二叉树的区别是,伸展树不需要存储任何像AVL树中平衡因子(balance factor)那样的平衡信息,可以节省空间的开销。
缺点:不像其他平衡二叉树那样即使最坏情况下也能达到O(logn)访问时间,它的最坏情况下只有O(n),跟单向链表一样。另外,伸展树的查找操作会修改树的结构,这与普通意义上的查找为只读操作习惯不太一样。
实现方式:伸展树的实现有两种方式,一是自底向上(bottom-up),另外一种是自顶向下(top-down)。
考虑到实现的难易程度,自顶向下的实现方式比较简单,因为自底向上需要保存已经被访问的节点,而自顶向下可以在搜索的过程中同时完成splay操作。
虽然两者得出的树结构不太一样,但是它们的平摊时间复杂度都是O(logn)。两种实现的基本操作就是splay,splay将最后被访问到的节点提升为根节点。
在自顶向下(top-down)的实现中,需要将输入的树拆成三颗树,分别为左树L,中树M和右树R。其中M树维护当前还未被访问到的节点,L树中所有节点的值都小于M树中的任何节点值,R树中所有节点的值都大于M树中的任何节点值。L树中只需要知道当前的最大节点 (leftTreeMax),而R树中只需要知道当前的最小节点(rightTreeMin)。左右两棵树的根节点分别可以通过nullNode节点(它是leftTreeMax和rightTreeMin的初始值,而且splay过程中变量nullNode本身未变化,只改变它的左右孩子节点)的右和左孩子节点得到,因为leftTreeMax中加入一个新的节点或子树时都是将新的节点作为leftTreeMax的右孩子,而不是左孩子(注意这里的顺序),rightTreeMin跟leftTreeMax相反。自顶向下的zig-zig或zag-zag需要做旋转操作,zig-zig的旋转操作叫rotationWithLeftChild,旋转后目标节点的父节点和祖父节点加入R树,zag-zag的旋转操作叫rotationWithRightChild,旋转后目标节点的父节点和祖父节点加入L树。另外zig-zag或zag-zig可以分别简化为zig或zag操作,这样可以将zig-zag和zig合二为一,从而只需考虑一种情况,而不需要将两种情况单独考虑。zig操作将目标节点的父节点加入R树,zag操作将目标节点的父节点加入L树。注意L和R树中每次加入新节点都需更新变量leftTreeMax或rightTreeMin。自顶向下splay操作的最后一步是重组(re-assemble):将M树的左孩子设置为L树的根节点,将M树的右孩子设置为R树的根节点,然后M树原来的左孩子成为leftTreeMax的右孩子,M树原来的右孩子成为rightTreeMin的左孩子。
注:rotationWithRightChild和rotationWithLeftChild的实现省略。
以下是类定义
#ifndef _splaytree_h_
#define _splaytree_h_ template<typename Comparable>
class SplayTree
{
public:
SplayTree()
{
nullNode = new BinaryNode;
nullNode->left = nullNode->right = nullNode;
root = nullNode;
} ~SplayTree()
{
makeEmpty();
delete nullNode;
} SplayTree(const Splay& rhs);
const SplayTree& operator=(const SplayTree&rhs);
// 此处省略操作方法 private:
struct BinaryNode
{
Comparable element;
BinaryNode *left;
BinaryNode *right; BinaryNode(const Comparable& theElement, BinaryNode *lt, BinaryNode* rt) :element(theElement), left(lt), right(rt){}
}; BinaryNode *root;
BinaryNode *nullNode;
// Internal method to perform a top-down splay.
void insert(const Comparable& x, BinaryNode*&t)const;
void remove(const Comparable& x, BinaryNode*&t)const;
BinaryNode* findMin(BinaryNode* t)const;
BinaryNode* findMax(BinaryNode* t)const;
bool contains(const Comparable&x, BinaryNode*t)const;
void makeEmpty(BinaryNode*&t);
void printTree(BinaryNode*t)const;
BinaryNode* clone(BinaryNode*t)const; void rotationWithLeftChild(BinaryNode*&k2);
void rotationWithRightChild(BinaryNode*& k1);
void splay(const Comparable& x, BinaryNode *&t);
}; #endif
接着splay的实现: 1 #include"splaytree.h"
template<typename Comparable>
void SplayTree<Comparable>::splay(const Comparable& x, BinaryNode*& t)
{
BinaryNode *leftTreeMax, *rightTreeMin;
static BinaryNode header; header.left = header.right = nullNode; //nullNode逻辑上表示一个NULL指针
leftTreeMax = rightTreeMin = &header; nullNode->element = x; //guarantee a match. for (;;)
if (x < t->element)
{
if ((x < t->left->element))
rotationWithLeftChild(t);
if (t->left == nullNode)
break;
// Link Right
rightTreeMin->left = t;
rightTreeMin = t;
t = t->left;
}
else if (t->element < x)
{
if (t->right->element < x)
rotationWithRightChild(t);
if (t->right == nullNode)
break;
// Link Left
leftTreeMax->right = t;
leftTreeMax = t;
t = t->right;
}
else
break; leftTreeMax->right = t->left;
rightTreeMin->left = t->right;
t->left = header.right;
t->right = header.left;
}
header.left和header.right分别引用R和L的根。(这不是输入错误,而是遵守链的指向)
void insert(const Comparable& x)
{
static BinaryNode* newNode = NULL;
if (newNode == NULL)
newNode = new BinaryNode;
newNode->element = x; if (root == nullNode)
{
newNode->left = newNode->right = nullNode;
root = newNode;
}
else
{
splay(x, root);
if (x < root->element)
{
newNode->left = root->right;
newNode->right = root;
root->left = nullNode;
root = newNode;
}
else if (root->element < x)
{
newNode->right = root->right;
newNode.left = root;
root->right = nullNode;
root = newNode;
}
else
return;
}
newNode = NULL; // So next insert will call new.
}
remove和makeEmpty的实现:
void remove(const Comparable& x)
{
BinaryNode *newNode;
splay(x, root);
if (root->element != x)
return;
if (root->left == nullNode)
newTree = root->right;
else
{
newTree = root->left;
splay(x, newTree); // 在左子树中寻找最大的项,把它伸展到根部
newTree->right = root->right; //连接右子树
}
delete root;
root = newTree;
} void makeEmpty()
{
whiel(!isEmpty())
{
findMax();
remove(root->element);
}
}
伸展树(SplayTree)的实现的更多相关文章
- 伸展树(三)之 Java的实现
概要 前面分别通过C和C++实现了伸展树,本章给出伸展树的Java版本.基本算法和原理都与前两章一样.1. 伸展树的介绍2. 伸展树的Java实现(完整源码)3. 伸展树的Java测试程序 转载请注明 ...
- K:伸展树(splay tree)
伸展树(Splay Tree),也叫分裂树,是一种二叉排序树,它能在O(lgN)内完成插入.查找和删除操作.在伸展树上的一般操作都基于伸展操作:假设想要对一个二叉查找树执行一系列的查找操作,为了使 ...
- SplayTree伸展树的非递归实现(自底向上)
Splay Tree 是二叉查找树的一种,它与平衡二叉树.红黑树不同的是,Splay Tree从不强制地保持自身的平衡,每当查找到某个节点n的时候,在返回节点n的同时,Splay Tree会将节点n旋 ...
- [SinGuLaRiTy] SplayTree 伸展树
[SinGuLaRiTy-1010]Copyrights (c) SinGuLaRiTy 2017. All Rights Reserved. Some Method Are Reprinted Fr ...
- 伸展树(一)之 图文解析 和 C语言的实现
概要 本章介绍伸展树.它和"二叉查找树"和"AVL树"一样,都是特殊的二叉树.在了解了"二叉查找树"和"AVL树"之后, ...
- 伸展树(二)之 C++的实现
概要 上一章介绍了伸展树的基本概念,并通过C语言实现了伸展树.本章是伸展树的C++实现,后续再给出Java版本.还是那句老话,它们的原理都一样,择其一了解即可. 目录1. 伸展树的介绍2. 伸展树的C ...
- PHP算法 《树形结构》 之 伸展树(1) - 基本概念
伸展树的介绍 1.出处:http://dongxicheng.org/structure/splay-tree/ A. 概述 二叉查找树(Binary Search Tree,也叫二叉排序树,即Bin ...
- [置顶] hdu 1890 伸展树区间翻转
题意: 给你n个数,每次先输出第i大的数的位置(如果有多个,选下标小的那个),然后每次将第i个位置到第i大的数所在位置之间的数进行翻转. 思路:输入的数组可能有多个相同的值,我们可以进行两次排序把数组 ...
- Hdu3487-Play with Chain(伸展树分裂合并)
Problem Description YaoYao is fond of playing his chains. He has a chain containing n diamonds on it ...
随机推荐
- Bezier曲线原理—动态解释
公式线性公式给定点P0.P1,线性贝兹曲线只是一条两点之间的直线.且其等同于线性插值.这条线由下式给出: 一阶贝赛尔曲线上的由两个点确定 P0 和P1,当t在0--->1区间上递增时,根据此会得 ...
- 使用 Task.Wait()?立刻死锁(deadlock)
最近读到一篇异步转同步的文章,发现其中没有考虑到异步转同步过程中发生的死锁问题,所以特地在本文说说异步转同步过程中的死锁问题. 文章作者 林德熙 已经修复了描述: - win10 uwp 异步转同步 ...
- tomcat nginx 证书切换
1. 导出公钥 keytool -export -alias tomcat -keystore <you jks>wsriakey.keystore -file <outputfil ...
- Toxiproxy 网络情况模式代理
1. 介绍 Toxiproxy is a framework for simulating network conditions. It's made specifically to work in ...
- 几个开源ssg 技术方案
1. Nanoc 2. Middle Man App 3. Hexo 4. DocPad 5. Hugo 6. Jekyll 7. Octopress 8. Harp ...
- PHP---如何修改域名的指定的根目录
如何修改域名的指定的根目录 环境:linux 使用工具:xShell 修改域名指定的文件根目录需要修改nginx的配置文件 第一步:连接xShell 第二步:进入根路径找到nginx的配置文件 cd ...
- (转)如何获得当前ListVIew包括下拉的所有数据?
ListView listView = activity.getListView();获取的仅仅是当前屏幕显示的list,但是具有下拉信息,不在当前屏幕,但是下拉显示的数据无法或得到.谁知道如何获得当 ...
- linux误删数据恢复
linux下数据恢复工具有: 1.通过分析文件系统的日志,解析文件的inode,可以恢复ex3 ex4的文件系统下的数据 extundelete:扫描inode和恢复数据同时进行,因此恢复速度很快.支 ...
- javascript系列学习----Creating objects
在javascript语言里面,一切皆是对象,对象是它的灵魂,值得我们学习和领悟对象的概念和使用,下面我会引用实例来进行说明. 1)创建对象 方法一:js的对象方法构造 var cody = new ...
- mac 电脑下添加 HTMLtestrunner.py 生成 报表
HTMLTestRunner是Python标准库unittest模块的一个扩展.它生成易于使用的HTML测试报告. 1.下载HTMLTestRunner.py模块地址 http://tungwaiyi ...