说明:此方案已经我们已经运行1年。

1、场景描述:

我们对客户登录日志做了数据仓库,但实际业务使用中有一些个共同点,

A  需要关联维度表

B  最终仅取某个产品一段时间内的数据

C 只关注其中极少的字段

基于以上业务,我们决定每天定时统一关联维度表,对关联后的数据进行另外存储。各个业务直接使用关联后的数据进行离线计算。

2、择parquet的外部因素

在各种列存储中,我们最终选择parquet的原因有许多。除了parquet自身的优点,还有以下因素

A、公司当时已经上线spark 集群,而spark天然支持parquet,并为其推荐的存储格式(默认存储为parquet)。

B、hive 支持parquet格式存储,如果以后使用hiveql 进行查询,也完全兼容。

3、选择parquet的内在原因

下面通过对比parquet和csv,说说parquet自身都有哪些优势

csv在hdfs上存储的大小与实际文件大小一样。若考虑副本,则为实际文件大小*副本数目。(若没有压缩)

3.1 parquet采用不同压缩方式的压缩比

说明:原始日志大小为214G左右,120+字段

采用csv(非压缩模式)几乎没有压缩。

采用parquet 非压缩模式、gzip、snappy格式压缩后分别为17.4G、8.0G、11G,达到的压缩比分别是:12、27、19。

若我们在hdfs上存储3份,压缩比仍达到4、9、6倍

3.2 分区过滤与列修剪

3.2.1分区过滤

parquet结合spark,可以完美的实现支持分区过滤。如,需要某个产品某段时间的数据,则hdfs只取这个文件夹。

spark sql、rdd 等的filter、where关键字均能达到分区过滤的效果。

使用spark的partitionBy 可以实现分区,若传入多个参数,则创建多级分区。第一个字段作为一级分区,第二个字段作为2级分区。。。。。

3.2.2 列修剪

列修剪:其实说简单点就是我们要取回的那些列的数据。

当取得列越少,速度越快。当取所有列的数据时,比如我们的120列数据,这时效率将极低。同时,也就失去了使用parquet的意义。

3.2.3 分区过滤与列修剪测试如下:

说明:

A、task数、input值、耗时均为spark web ui上的真实数据。

B、之所以没有验证csv进行对比,是因为当200多G,每条记录为120字段时,csv读取一个字段算个count就直接lost excuter了。

C、注意:为避免自动优化,我们直接打印了每条记录每个字段的值。(以上耗时估计有多部分是耗在这里了)

D、通过上图对比可以发现:

  • 当我们取出所有记录时,三种压缩方式耗时差别不大。耗时大概7分钟。
  • 当我们仅取出某一天时,parquet的分区过滤优势便显示出来。仅为6分之一左右。貌似当时全量为七八天左右吧。
  • 当我们仅取某一天的一个字段时,时间将再次缩短。这时,硬盘将只扫描该列所在rowgroup的柱面。大大节省IO。如有兴趣,可以参考深入分析Parquet列式存储格式

E、测试时请开启filterpushdown功能

4、结论

  • parquet的gzip的压缩比率最高,若不考虑备份可以达到倍。可能这也是spar parquet默认采用gzip压缩的原因吧。
  • 分区过滤和列修剪可以帮助我们大幅节省磁盘IO。以减轻对服务器的压力。
  • 如果你的数据字段非常多,但实际应用中,每个业务仅读取其中少量字段,parquet将是一个非常好的选择。

为什么我们选择parquet的更多相关文章

  1. hadoop入门到实战(6)hive常用优化方法总结

    问题导读:1.如何理解列裁剪和分区裁剪?2.sort by代替order by优势在哪里?3.如何调整group by配置?4.如何优化SQL处理join数据倾斜?Hive作为大数据领域常用的数据仓库 ...

  2. Parquet与ORC:高性能列式存储格式(收藏)

    背景 随着大数据时代的到来,越来越多的数据流向了Hadoop生态圈,同时对于能够快速的从TB甚至PB级别的数据中获取有价值的数据对于一个产品和公司来说更加重要,在Hadoop生态圈的快速发展过程中,涌 ...

  3. 大数据小视角2:ORCFile与Parquet,开源圈背后的生意

    上一篇文章聊了聊基于PAX的混合存储结构的RCFile,其实这里笔者还了解一些八卦,RCfile的主力团队都是来自中科院的童鞋在Facebook完成的,算是一个由华人主导的编码项目.但是RCfile仍 ...

  4. Hive 导入 parquet 格式数据

    Hive 导入 parquet 数据步骤如下: 查看 parquet 文件的格式 构造建表语句 倒入数据 一.查看 parquet 内容和结构 下载地址 社区工具 GitHub 地址 命令 查看结构: ...

  5. 开源列式存储引擎Parquet和ORC

    转载自董的博客 相比传统的行式存储引擎,列式存储引擎具有更高的压缩比,更少的IO操作而备受青睐(注:列式存储不是万能高效的,很多场景下行式存储仍更加高效),尤其是在数据列(column)数很多,但每次 ...

  6. 【kudu pk parquet】runtime filter实践

    已经有好一阵子没有写博文了,今天给大家带来一篇最近一段时间开发相关的文章:在impala和kudu上支持runtime filter. 大家搜索下实践者社区,可以发现前面已经有好几位同学写了这个主题的 ...

  7. Parquet and ORC

    http://dongxicheng.org/mapreduce-nextgen/columnar-storage-parquet-and-orc/ 相比传统的行式存储引擎,列式存储引擎具有更高的压缩 ...

  8. parquet文件格式——本质上是将多个rows作为一个chunk,同一个chunk里每一个单独的column使用列存储格式,这样获取某一row数据时候不需要跨机器获取

    Parquet是Twitter贡献给开源社区的一个列数据存储格式,采用和Dremel相同的文件存储算法,支持树形结构存储和基于列的访问.Cloudera Impala也将使用Parquet作为底层的存 ...

  9. Hive性能调优(一)----文件存储格式及压缩方式选择

    合理使用文件存储格式 建表时,尽量使用 orc.parquet 这些列式存储格式,因为列式存储的表,每一列的数据在物理上是存储在一起的,Hive查询时会只遍历需要列数据,大大减少处理的数据量. 采用合 ...

随机推荐

  1. 赵雅智_ListView_ArrayAdapter

    ArrayAdapter六种构造方法的作用 ArrayAdapter<T>(Context context, int textViewResourceId); 上下文,布局文件 Array ...

  2. sails route(1) -用户定义路由

    sails支持两种类型的路由: custom(or "explicit") andautomatic(or "implicit"). 先来看一下custom 即 ...

  3. Spark2.0机器学习系列之7: MLPC(多层神经网络)

    Spark2.0 MLPC(多层神经网络分类器)算法概述 MultilayerPerceptronClassifier(MLPC)这是一个基于前馈神经网络的分类器,它是一种在输入层与输出层之间含有一层 ...

  4. python将图片转化为字符图

    最近看到将图片转化为字符图的小实验,我觉得很有趣,所以决定自己实现一下. 步骤和原理如下: 读取图片的灰度值矩阵(0-255之间),灰度值矩阵主要反映的是图片的黑白程度,越黑越接近与0,越白越接近于2 ...

  5. windows 2003 iis php

    我的环境 是   windows server200 ee   iis6.0  程序是php 1.一台安装好的 Windows 2003 服务器,并且已经安装了 IIS 6. 2.下载 windows ...

  6. Linux系统——文件系统与LVM 逻辑

    格式化命令 mkfs. mkswap mkfs格式化数据磁盘 # mkfs -t ext4 /dev/sdb1 # mkfs.ext4 /dev/sdb1 -t 指定格式化文件类型 -b 指定bloc ...

  7. Java基础知识陷阱(二)

    本文发表于本人博客. 上次说了一些关于字符串的知识,都是比较基础的,那这次也说下关于对象地址问题,比如传参.先看下面代码: public void changeInt(int a){ a = ; } ...

  8. BigInteger和Complex:NET 4新增数据类型

    BigInteger和Complex是.NET 4中新增的两种值类型,他们位于System.Numeric命名空间下,需要单独添加引用. BigInteger BigInteger类型是不可变类型,代 ...

  9. 20. Valid Parentheses(括号匹配,用桟)

    Given a string containing just the characters '(', ')', '{', '}', '[' and ']', determine if the inpu ...

  10. 20145303 《Java程序设计》第7周学习总结

    20145303 <Java程序设计>第7周学习总结 教材学习内容总结 时间的度量 格林威治标准时间(GMT),现已不作为标准时间使用,即使标注为GMT(格林威治时间),实际上谈到的的是U ...