N couples sit in 2N seats arranged in a row and want to hold hands. We want to know the minimum number of swaps so that every couple is sitting side by side. A swap consists of choosing any two people, then they stand up and switch seats.

The people and seats are represented by an integer from 0 to 2N-1, the couples are numbered in order, the first couple being (0, 1), the second couple being (2, 3), and so on with the last couple being (2N-2, 2N-1).

The couples' initial seating is given by row[i] being the value of the person who is initially sitting in the i-th seat.

Example 1:

Input: row = [0, 2, 1, 3]
Output: 1
Explanation: We only need to swap the second (row[1]) and third (row[2]) person.

Example 2:

Input: row = [3, 2, 0, 1]
Output: 0
Explanation: All couples are already seated side by side.

Note:

  1. len(row) is even and in the range of [4, 60].
  2. row is guaranteed to be a permutation of 0...len(row)-1.

思路

本来以为是用dp解题,然而不是,还是好好背题吧。解法有 cyclic swapping,并差集,贪心这三种。

完整解释:https://leetcode.com/problems/couples-holding-hands/discuss/113362/JavaC++-O(N)-solution-using-cyclic-swapping

一大串英文解释,看的不是很懂,百度了下,看到一片篇解释得很易懂的博文:

https://www.cnblogs.com/grandyang/p/8716597.html

首先是贪心的解法:

class Solution {
public int minSwapsCouples(int[] row) {
int res=0, n=row.length;
for(int i=0;i<n;i=i+2){
if(row[i+1]==(row[i]^1)) continue;
res++;
for(int j=i+1;j<n;j++){
if(row[j]==(row[i]^1)){  // 这里注意要加括号,因为java中恒等运算符的优先级大于位运算
row[j]=row[i+1];
row[i+1]=(row[i]^1);
break;
}
}
}
return res;
}
}

接下来是并查集的解法,关于并查集算法的解释可以见这篇博文:https://blog.csdn.net/dm_vincent/article/details/7655764

LeetCode上的解释:

Think about each couple as a vertex(顶点) in the graph. So if there are N couples, there are N vertices. Now if in position 2i and 2i +1 there are person from couple u and couple v sitting there, that means that the permutations are going to involve u and v. So we add an edge to connect u and v. The min number of swaps = N - number of connected components. This follows directly from the theory of permutations. Any permutation can be decomposed into a composition of cyclic permutations. If the cyclic permutation involve k elements, we need k -1 swaps. You can think about each swap as reducing the size of the cyclic permutation by 1. So in the end, if the graph has k connected components, we need N - k swaps to reduce it back to N disjoint vertices.

class Solution {
private class UF {
private int[] parents;
public int count;
UF(int n) {  // 初始化组号
parents = new int[n];
for (int i = 0; i < n; i++) {
parents[i] = i;  // i-具体节点的值,parents[i]-节点i所对应的组号,放在这题中i就是couple的编号,数组值就是这个couple应该在的组号
}
count = n;
} private int find(int i) {
if (parents[i] == i) {  // 如果couple的编号和组号对应,所在组号正确,直接返回组号
return i;
}
parents[i] = find(parents[i]);  // 这种情形时发生了标记1的情况,连接后组号被修改过,不会和原来对应
return parents[i];
} public void union(int i, int j) {
int a = find(i);
int b = find(j);
if (a != b) {  // 如果不在一个组,连接之
parents[a] = b;  // 将a的组号改成b的,注意原parents数组如果组号是a,那么其数组索引也是a。标记1
count--;  
}
}
}
public int minSwapsCouples(int[] row) {
int N = row.length/ 2;
UF uf = new UF(N);  // 并查集初始化组号
for (int i = 0; i < N; i++) {
int a = row[2*i];
int b = row[2*i + 1];
uf.union(a/2, b/2);
}
return N - uf.count;
}
}

LeetCode765. Couples Holding Hands的更多相关文章

  1. Leetcode之并查集专题-765. 情侣牵手(Couples Holding Hands)

    Leetcode之并查集专题-765. 情侣牵手(Couples Holding Hands) N 对情侣坐在连续排列的 2N 个座位上,想要牵到对方的手. 计算最少交换座位的次数,以便每对情侣可以并 ...

  2. [Swift]LeetCode765. 情侣牵手 | Couples Holding Hands

    N couples sit in 2N seats arranged in a row and want to hold hands. We want to know the minimum numb ...

  3. [LeetCode] Couples Holding Hands 两两握手

    N couples sit in 2N seats arranged in a row and want to hold hands. We want to know the minimum numb ...

  4. [LeetCode] 765. Couples Holding Hands 情侣牵手

    N couples sit in 2N seats arranged in a row and want to hold hands. We want to know the minimum numb ...

  5. 【LeetCode】765. Couples Holding Hands 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址: https://leetcode.com/problems/couples- ...

  6. 765. Couples Holding Hands

    ▶ n 对夫妻共 2n 个人随机坐成一排,“交换其中某两人的位置” 称为一次操作,求最少的操作此次数,使 n 对夫妻两人都相邻.初始座位为非负整数列 D1n-1,其中值为 2k 和 2k+1 的两个元 ...

  7. [LeetCode] First Missing Positive 首个缺失的正数

    Given an unsorted integer array, find the first missing positive integer. For example,Given [1,2,0]  ...

  8. Swift LeetCode 目录 | Catalog

    请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift    说明:题目中含有$符号则为付费题目. 如 ...

  9. LeetCode All in One题解汇总(持续更新中...)

    突然很想刷刷题,LeetCode是一个不错的选择,忽略了输入输出,更好的突出了算法,省去了不少时间. dalao们发现了任何错误,或是代码无法通过,或是有更好的解法,或是有任何疑问和建议的话,可以在对 ...

随机推荐

  1. sysbench - 单组件式测试工具

    1 安装 > ./configure --with-mysql-includes=/usr/local/mysql/include --with-mysql-libs=/usr/local/my ...

  2. luoguP5105 不强制在线的动态快速排序

    emm 可重集合没用用.直接变成不可重复集合 有若干个区间 每个区间形如[L,R] [L,R]计算的话,就是若干个连续奇数的和.拆位统计1的个数 平衡树维护 加入一个[L,R],把相交的区间合并.之后 ...

  3. Canny边缘检测原理及C#程序实现

    http://blog.csdn.net/yjz_uestc/article/details/6664937 Canny边缘检测是被公认的检测效果最好的边缘检测方法,是由John F. Canny于1 ...

  4. winform设计一个登录界面和修改密码的界面-自动切换窗体(问题[已解] 望一起讨论)(技术改变世界-cnblog)

    http://www.cnblogs.com/IAmBetter/archive/2012/01/14/2322156.html winform设计一个登录界面和修改密码的界面-自动切换窗体(问题[已 ...

  5. 洛谷P1106 删数问题

    题目描述 键盘输入一个高精度的正整数N,去掉其中任意k个数字后剩下的数字按原左右次序将组成一个新的正整数.编程对给定的N和k,寻找一种方案使得剩下的数字组成的新数最小. 输出应包括所去掉的数字的位置和 ...

  6. Java基础-synchronized关键字的用法(转载)

    synchronized--同步 顾名思义是用于同步互斥的作用的. 这里精简的记一下它的使用方法以及意义: 当synchronized修饰 this或者非静态方法或者是一个实例的时候,所同步的锁是加在 ...

  7. 转:Unable to execute dex: Multiple dex files define 解决方法

    转自:http://blog.csdn.net/mxlxiao7/article/details/8978930 问题发生概述: 程序编译正常,在用Eclipse调试执行时,报错Unable to e ...

  8. 2017北京国庆刷题Day3 afternoon

    期望得分:100+0+30=130 实际得分:100+36.5+0=136.5 T3 一个变量写混了,丢了30.. 模拟栈 #include<cstdio> #include<cst ...

  9. HDU 2138 Miller-Rabin 模板题

    求素数个数. /** @Date : 2017-09-18 23:05:15 * @FileName: HDU 2138 miller-rabin 模板.cpp * @Platform: Window ...

  10. GridControl详解(八)菜单

    菜单控件 拖入窗口中 显示如下 设置popupMenu 设置barManager 设置controller 增加菜单项 弹出配置窗口 一般菜单项设置 对应属性如下: 对应事件: 选择菜单项设置 事件同 ...