LeetCode765. Couples Holding Hands
N couples sit in 2N seats arranged in a row and want to hold hands. We want to know the minimum number of swaps so that every couple is sitting side by side. A swap consists of choosing any two people, then they stand up and switch seats.
The people and seats are represented by an integer from 0 to 2N-1, the couples are numbered in order, the first couple being (0, 1), the second couple being (2, 3), and so on with the last couple being (2N-2, 2N-1).
The couples' initial seating is given by row[i] being the value of the person who is initially sitting in the i-th seat.
Example 1:
Input: row = [0, 2, 1, 3]
Output: 1
Explanation: We only need to swap the second (row[1]) and third (row[2]) person.
Example 2:
Input: row = [3, 2, 0, 1]
Output: 0
Explanation: All couples are already seated side by side.
Note:
len(row)is even and in the range of[4, 60].rowis guaranteed to be a permutation of0...len(row)-1.
思路
本来以为是用dp解题,然而不是,还是好好背题吧。解法有 cyclic swapping,并差集,贪心这三种。
一大串英文解释,看的不是很懂,百度了下,看到一片篇解释得很易懂的博文:
https://www.cnblogs.com/grandyang/p/8716597.html
首先是贪心的解法:
class Solution {
public int minSwapsCouples(int[] row) {
int res=0, n=row.length;
for(int i=0;i<n;i=i+2){
if(row[i+1]==(row[i]^1)) continue;
res++;
for(int j=i+1;j<n;j++){
if(row[j]==(row[i]^1)){ // 这里注意要加括号,因为java中恒等运算符的优先级大于位运算
row[j]=row[i+1];
row[i+1]=(row[i]^1);
break;
}
}
}
return res;
}
}
接下来是并查集的解法,关于并查集算法的解释可以见这篇博文:https://blog.csdn.net/dm_vincent/article/details/7655764
LeetCode上的解释:
Think about each couple as a vertex(顶点) in the graph. So if there are N couples, there are N vertices. Now if in position 2i and 2i +1 there are person from couple u and couple v sitting there, that means that the permutations are going to involve u and v. So we add an edge to connect u and v. The min number of swaps = N - number of connected components. This follows directly from the theory of permutations. Any permutation can be decomposed into a composition of cyclic permutations. If the cyclic permutation involve k elements, we need k -1 swaps. You can think about each swap as reducing the size of the cyclic permutation by 1. So in the end, if the graph has k connected components, we need N - k swaps to reduce it back to N disjoint vertices.
class Solution {
private class UF {
private int[] parents;
public int count;
UF(int n) { // 初始化组号
parents = new int[n];
for (int i = 0; i < n; i++) {
parents[i] = i; // i-具体节点的值,parents[i]-节点i所对应的组号,放在这题中i就是couple的编号,数组值就是这个couple应该在的组号
}
count = n;
}
private int find(int i) {
if (parents[i] == i) { // 如果couple的编号和组号对应,所在组号正确,直接返回组号
return i;
}
parents[i] = find(parents[i]); // 这种情形时发生了标记1的情况,连接后组号被修改过,不会和原来对应
return parents[i];
}
public void union(int i, int j) {
int a = find(i);
int b = find(j);
if (a != b) { // 如果不在一个组,连接之
parents[a] = b; // 将a的组号改成b的,注意原parents数组如果组号是a,那么其数组索引也是a。标记1
count--;
}
}
}
public int minSwapsCouples(int[] row) {
int N = row.length/ 2;
UF uf = new UF(N); // 并查集初始化组号
for (int i = 0; i < N; i++) {
int a = row[2*i];
int b = row[2*i + 1];
uf.union(a/2, b/2);
}
return N - uf.count;
}
}
LeetCode765. Couples Holding Hands的更多相关文章
- Leetcode之并查集专题-765. 情侣牵手(Couples Holding Hands)
Leetcode之并查集专题-765. 情侣牵手(Couples Holding Hands) N 对情侣坐在连续排列的 2N 个座位上,想要牵到对方的手. 计算最少交换座位的次数,以便每对情侣可以并 ...
- [Swift]LeetCode765. 情侣牵手 | Couples Holding Hands
N couples sit in 2N seats arranged in a row and want to hold hands. We want to know the minimum numb ...
- [LeetCode] Couples Holding Hands 两两握手
N couples sit in 2N seats arranged in a row and want to hold hands. We want to know the minimum numb ...
- [LeetCode] 765. Couples Holding Hands 情侣牵手
N couples sit in 2N seats arranged in a row and want to hold hands. We want to know the minimum numb ...
- 【LeetCode】765. Couples Holding Hands 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址: https://leetcode.com/problems/couples- ...
- 765. Couples Holding Hands
▶ n 对夫妻共 2n 个人随机坐成一排,“交换其中某两人的位置” 称为一次操作,求最少的操作此次数,使 n 对夫妻两人都相邻.初始座位为非负整数列 D1n-1,其中值为 2k 和 2k+1 的两个元 ...
- [LeetCode] First Missing Positive 首个缺失的正数
Given an unsorted integer array, find the first missing positive integer. For example,Given [1,2,0] ...
- Swift LeetCode 目录 | Catalog
请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift 说明:题目中含有$符号则为付费题目. 如 ...
- LeetCode All in One题解汇总(持续更新中...)
突然很想刷刷题,LeetCode是一个不错的选择,忽略了输入输出,更好的突出了算法,省去了不少时间. dalao们发现了任何错误,或是代码无法通过,或是有更好的解法,或是有任何疑问和建议的话,可以在对 ...
随机推荐
- HDU-3974 Assign the task题解报告【dfs序+线段树】
There is a company that has N employees(numbered from 1 to N),every employee in the company has a im ...
- 洛谷 P4319 变化的道路 解题报告
P4319 变化的道路 题目描述 小 w 和小 c 在 H 国,近年来,随着 H 国的发展,H 国的道路也在不断变化着 根据 H 国的道路法,H 国道路都有一个值 \(w\),表示如果小 w 和小 c ...
- [HNOI2006]最短母串问题——AC自动机+状压+bfs环形处理
Description 给定n个字符串(S1,S2,„,Sn),要求找到一个最短的字符串T,使得这n个字符串(S1,S2,„,Sn)都是T的子串. 32MB Input 第一行是一个正整数n(n< ...
- Notes of fwt
昨天考试由于不会fwt而爆炸,所以今天搞了一下fwt……话说这玩意的普及程度已经很高了.fwt,快速沃尔什变换,可以用于位运算卷积的优化,是一种线性变换,所以就会有许多好的性质(eg:可以直接模,可以 ...
- python基础----常用模块
一 time模块(时间模块)★★★★ 时间表现形式 在Python中,通常有这三种方式来表示时 ...
- 流媒体协议之RTP详解20170921
1.RTP介绍 实时传输协议RTP(Real-time Transport Protocol)是一个网络传输协议,它是由IETF的多媒体传输工作小组1996年在RFC 1889中公布的,后在RFC35 ...
- 虚拟机安装ubuntu14.04.5系统
参考教程 在vitualbox安装 ubuntu14.04.2 LTS教程 http://jingyan.baidu.com/article/46650658228345f549e5f8cc.html ...
- angular 使用rxjs 监听同级兄弟组件数据变化
angular 的官网给出了父子组件之间数据交互的方法,如ViewChild.EventEmitter 但是如果要在同级组件之间进行数据同步,似乎并没有给出太多的信息. 有时候我们想,在一个组件中修改 ...
- linux命令行设置git提示符
http://note.youdao.com/noteshare?id=3b6b2ee0925964928fd63d2c51e6bcef
- mongodb replica set 和 nodejs中使用mongoose连接replica
一.mongodb replication 介绍 官网上的第一句话就是Replication is the process of synchronizing data across multiple ...