csu 1553(RMQ+尺取法)
1553: Good subsequence
Time Limit: 2 Sec Memory Limit: 256 MB
Submit: 794 Solved: 287
[Submit][Status][Web Board]
Description
Give
you a sequence of n numbers, and a number k you should find the max
length of Good subsequence. Good subsequence is a continuous subsequence
of the given sequence and its maximum value - minimum value<=k. For
example n=5, k=2, the sequence ={5, 4, 2, 3, 1}. The answer is 3, the
good subsequence are {4, 2, 3} or {2, 3, 1}.
Input
There are several test cases.
Each test case contains two line. the first line are two numbers
indicates n and k (1<=n<=10,000, 1<=k<=1,000,000,000). The
second line give the sequence of n numbers a[i] (1<=i<=n,
1<=a[i]<=1,000,000,000).
The input will finish with the end of file.
Output
For each the case, output one integer indicates the answer.
Sample Input
5 2
5 4 2 3 1
1 1
1
Sample Output
3
1 题意:在区间内找一段长度最大的子区间满足子区间的最大值 - 子区间的最小值 <=k ,输出最大值。
题解:尺取法扫一遍就可以得到了,区间最大最小用RMQ或者线段树都可以。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
#define N 10010 int a[N];
int max_dp[N][];
int min_dp[N][]; void init_MAX_RMQ(int n){
for(int i=;i<=n;i++) max_dp[i][]=a[i];
for(int j=;(<<j)<=n;j++){
for(int i=;i<=n-(<<j)+;i++){
max_dp[i][j] = max(max_dp[i][j-],max_dp[i+(<<(j-))][j-]);
}
}
}
int MAX_RMQ(int a,int b){
int k = (int)(log(b-a+1.0)/log(2.0));
return max(max_dp[a][k],max_dp[b-(<<k)+][k]);
}
void init_MIN_RMQ(int n){
for(int i=;i<=n;i++) min_dp[i][]=a[i];
for(int j=;(<<j)<=n;j++){
for(int i=;i<=n-(<<j)+;i++){
min_dp[i][j] = min(min_dp[i][j-],min_dp[i+(<<(j-))][j-]);
}
}
}
int MIN_RMQ(int a,int b){
int k = (int)(log(b-a+1.0)/log(2.0));
return min(min_dp[a][k],min_dp[b-(<<k)+][k]);
}
int main()
{
int n,k;
while(scanf("%d%d",&n,&k)!=EOF){
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
}
init_MAX_RMQ(n);
init_MIN_RMQ(n);
int MAX = -;
int maxv =a[], minv = a[];
int l = ,r = ;
while(l<=n){
while(r<=n){
maxv = MAX_RMQ(l,r);
minv = MIN_RMQ(l,r);
if(maxv-minv>k) break;
MAX = max(r-l+,MAX);
r++;
}
l++;
maxv = MAX_RMQ(l,r);
minv = MIN_RMQ(l,r);
}
printf("%d\n",MAX);
}
return ;
}
csu 1553(RMQ+尺取法)的更多相关文章
- 树形DP+RMQ+尺取法 hdu4123
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4123 参考博客:两种解法-树形dp+二分+单调队列(或RMQ)-hdu-4123-Bob’s Race ...
- 二分+RMQ/双端队列/尺取法 HDOJ 5289 Assignment
题目传送门 /* 题意:问有几个区间最大值-最小值 < k 解法1:枚举左端点,二分右端点,用RMQ(或树状数组)求区间最值,O(nlog(n))复杂度 解法2:用单调队列维护最值,O(n)复杂 ...
- HDU 4123 (2011 Asia FZU contest)(树形DP + 维护最长子序列)(bfs + 尺取法)
题意:告诉一张带权图,不存在环,存下每个点能够到的最大的距离,就是一个长度为n的序列,然后求出最大值-最小值不大于Q的最长子序列的长度. 做法1:两步,第一步是根据图计算出这个序列,大姐头用了树形DP ...
- POJ3162 Walking Race(树形DP+尺取法+单调队列)
题目大概是给一棵n个结点边带权的树,记结点i到其他结点最远距离为d[i],问d数组构成的这个序列中满足其中最大值与最小值的差不超过m的连续子序列最长是多长. 各个结点到其他结点的最远距离可以用树形DP ...
- 5806 NanoApe Loves Sequence Ⅱ(尺取法)
传送门 NanoApe Loves Sequence Ⅱ Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 262144/131072 K ...
- POJ3061 尺取法
题目大意:从给定序列里找出区间和大于等于S的最小区间的长度. 前阵子在zzuli OJ上见过类似的题,还好当时补题了.尺取法O(n) 的复杂度过掉的.尺取法:从头遍历,如果不满足条件,则将尺子尾 部增 ...
- POJ 2739 Sum of Consecutive Prime Numbers(尺取法)
题目链接: 传送门 Sum of Consecutive Prime Numbers Time Limit: 1000MS Memory Limit: 65536K Description S ...
- CF 701C They Are Everywhere(尺取法)
题目链接: 传送门 They Are Everywhere time limit per test:2 second memory limit per test:256 megabytes D ...
- nyoj133_子序列_离散化_尺取法
子序列 时间限制:3000 ms | 内存限制:65535 KB 难度:5 描述 给定一个序列,请你求出该序列的一个连续的子序列,使原串中出现的所有元素皆在该子序列中出现过至少1次. 如2 8 ...
随机推荐
- Active Directory中获取域管理员权限的攻击方法
Active Directory中获取域管理员权限的攻击方法 译:by backlion 0x00 前言 攻击者可以通过多种方式在Active Directory中获得域管理员权限, ...
- 【读书笔记】《HTTP权威指南》:Web Robots
一.概述 Web机器人(Web Robots)是一种Web客户端的软件程序,它自动发起一系列的Web事务,从而在没有人工参与的状态下完成各种Web数据的搜集和处理. 典型的Web机器人有: 股票绘图机 ...
- 70路小报:用PV和UV作为网站衡量指标已经过时
方法]投资人呼吁:PV和UV不应该再作为产品衡量指标 风险投资机构Andreessen Horowitz近日一直反对再用传统的网站衡量指标去评价互联网产品,比如PV和UV,甚至包括应用的下载量. 他们 ...
- git使用笔记(十四)cat-file
By francis_hao Mar 18,2018 git cat-file :提供仓库中对象实体的类型.大小和内容的信息 概要 git cat-file (-t | -s | -e | ...
- gdb打印STL和boost容器
http://note.youdao.com/noteshare?id=b581e0db0084b6ba3011d9d27d372c91
- Redis安装部署【转】
Redis是一种高级key-value数据库.它跟memcached类似,不过数据可以持久化,而且支持的数据类型很丰富.有字符串,链表,集 合和有序集合.支持在服务器端计算集合的并,交和补集(diff ...
- CF844 C 置换 水
由于每个数字只出现一次,离散化一下,置换求个循环节就好了. /** @Date : 2017-08-25 01:39:39 * @FileName: C.cpp * @Platform: Window ...
- linux中execve函数的用法
在父进程中fork一个子进程,在子进程中调用exec函数启动新的程序.exec函数一共有六个,其中execve为内核级系统调用,其他(execl,execle,execlp,execv,execvp) ...
- linux命令df中df -h和df -i的区别
df 命令: linux中df命令的功能是用来检查linux服务器的文件系统的磁盘空间占用情况.可以利用该命令来获取硬盘被占用了多少空间,目前还剩下多少空间等信息. 1.命令格式: df [选项] [ ...
- linux内核文件系统:proc、tmpfs、devfs、sysfs简要介绍
linux内核文件系统:proc.tmpfs.devfs.sysfs proc:虚拟文件系统,在linux系统中被挂载与/proc目录下.里面的文件包含了很多系统信息,比如cpu负载. 内存.网络配置 ...