1553: Good subsequence

Time Limit: 2 Sec  Memory Limit: 256 MB
Submit: 794  Solved: 287
[Submit][Status][Web Board]

Description

Give
you a sequence of n numbers, and a number k you should find the max
length of Good subsequence. Good subsequence is a continuous subsequence
of the given sequence and its maximum value - minimum value<=k. For
example n=5, k=2, the sequence ={5, 4, 2, 3, 1}. The answer is 3, the
good subsequence are {4, 2, 3} or {2, 3, 1}.

Input

There are several test cases.
Each test case contains two line. the first line are two numbers
indicates n and k (1<=n<=10,000, 1<=k<=1,000,000,000). The
second line give the sequence of n numbers a[i] (1<=i<=n,
1<=a[i]<=1,000,000,000).
The input will finish with the end of file.

Output

For each the case, output one integer indicates the answer.

Sample Input

5 2
5 4 2 3 1
1 1
1

Sample Output

3
1 题意:在区间内找一段长度最大的子区间满足子区间的最大值 - 子区间的最小值 <=k ,输出最大值。
题解:尺取法扫一遍就可以得到了,区间最大最小用RMQ或者线段树都可以。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
#define N 10010 int a[N];
int max_dp[N][];
int min_dp[N][]; void init_MAX_RMQ(int n){
for(int i=;i<=n;i++) max_dp[i][]=a[i];
for(int j=;(<<j)<=n;j++){
for(int i=;i<=n-(<<j)+;i++){
max_dp[i][j] = max(max_dp[i][j-],max_dp[i+(<<(j-))][j-]);
}
}
}
int MAX_RMQ(int a,int b){
int k = (int)(log(b-a+1.0)/log(2.0));
return max(max_dp[a][k],max_dp[b-(<<k)+][k]);
}
void init_MIN_RMQ(int n){
for(int i=;i<=n;i++) min_dp[i][]=a[i];
for(int j=;(<<j)<=n;j++){
for(int i=;i<=n-(<<j)+;i++){
min_dp[i][j] = min(min_dp[i][j-],min_dp[i+(<<(j-))][j-]);
}
}
}
int MIN_RMQ(int a,int b){
int k = (int)(log(b-a+1.0)/log(2.0));
return min(min_dp[a][k],min_dp[b-(<<k)+][k]);
}
int main()
{
int n,k;
while(scanf("%d%d",&n,&k)!=EOF){
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
}
init_MAX_RMQ(n);
init_MIN_RMQ(n);
int MAX = -;
int maxv =a[], minv = a[];
int l = ,r = ;
while(l<=n){
while(r<=n){
maxv = MAX_RMQ(l,r);
minv = MIN_RMQ(l,r);
if(maxv-minv>k) break;
MAX = max(r-l+,MAX);
r++;
}
l++;
maxv = MAX_RMQ(l,r);
minv = MIN_RMQ(l,r);
}
printf("%d\n",MAX);
}
return ;
}

csu 1553(RMQ+尺取法)的更多相关文章

  1. 树形DP+RMQ+尺取法 hdu4123

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4123 参考博客:两种解法-树形dp+二分+单调队列(或RMQ)-hdu-4123-Bob’s Race ...

  2. 二分+RMQ/双端队列/尺取法 HDOJ 5289 Assignment

    题目传送门 /* 题意:问有几个区间最大值-最小值 < k 解法1:枚举左端点,二分右端点,用RMQ(或树状数组)求区间最值,O(nlog(n))复杂度 解法2:用单调队列维护最值,O(n)复杂 ...

  3. HDU 4123 (2011 Asia FZU contest)(树形DP + 维护最长子序列)(bfs + 尺取法)

    题意:告诉一张带权图,不存在环,存下每个点能够到的最大的距离,就是一个长度为n的序列,然后求出最大值-最小值不大于Q的最长子序列的长度. 做法1:两步,第一步是根据图计算出这个序列,大姐头用了树形DP ...

  4. POJ3162 Walking Race(树形DP+尺取法+单调队列)

    题目大概是给一棵n个结点边带权的树,记结点i到其他结点最远距离为d[i],问d数组构成的这个序列中满足其中最大值与最小值的差不超过m的连续子序列最长是多长. 各个结点到其他结点的最远距离可以用树形DP ...

  5. 5806 NanoApe Loves Sequence Ⅱ(尺取法)

    传送门 NanoApe Loves Sequence Ⅱ Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/131072 K ...

  6. POJ3061 尺取法

    题目大意:从给定序列里找出区间和大于等于S的最小区间的长度. 前阵子在zzuli OJ上见过类似的题,还好当时补题了.尺取法O(n) 的复杂度过掉的.尺取法:从头遍历,如果不满足条件,则将尺子尾 部增 ...

  7. POJ 2739 Sum of Consecutive Prime Numbers(尺取法)

    题目链接: 传送门 Sum of Consecutive Prime Numbers Time Limit: 1000MS     Memory Limit: 65536K Description S ...

  8. CF 701C They Are Everywhere(尺取法)

    题目链接: 传送门 They Are Everywhere time limit per test:2 second     memory limit per test:256 megabytes D ...

  9. nyoj133_子序列_离散化_尺取法

    子序列 时间限制:3000 ms  |  内存限制:65535 KB 难度:5   描述 给定一个序列,请你求出该序列的一个连续的子序列,使原串中出现的所有元素皆在该子序列中出现过至少1次. 如2 8 ...

随机推荐

  1. 洛谷 P3241 [HNOI2015]开店 解题报告

    P3241 [HNOI2015]开店 题目描述 风见幽香有一个好朋友叫八云紫,她们经常一起看星星看月亮从诗词歌赋谈到人生哲学.最近她们灵机一动,打算在幻想乡开一家小店来做生意赚点钱. 这样的想法当然非 ...

  2. 解题:POI 2007 Weights

    题面 这是个$O(nlog^2$ $n)$的解法,因为蒟蒻博主没有看懂$O(nlog$ $n)$的更优秀的解法 显然从小到大装砝码是最优的方法,又显然从大到小装容器不会使得答案变劣,还显然砝码数具有单 ...

  3. 51nod 1684 子集价值

    lyk最近在研究位运算. 它发现除了xor,or,and外还有很多运算. 它新定义了一种运算符“#”. 具体地,可以由4个参数来表示. ai,j表示 i#j. 其中i,j与a的值均∈[0,1]. 当然 ...

  4. [大数据可视化]-saiku的源码打包运行/二次开发构建

    Saiku构建好之后,会将项目的各个模块达成jar包,整个项目也会打成war包 saiku目录结构:   我们选中saiku-server/target/ 下面的zip压缩包.这是个打包后的文件,进行 ...

  5. CSS中em,rem的区别

    首先这两个单位一般用在移动端 不太清楚得求证  再记录 1.em w3cschool中给出css中尺寸单位如下: 单位 描述 % 百分比 in 英寸 cm 厘米 mm 毫米 em 1em 等于当前的字 ...

  6. Chrome工具使用

    (1) Chrome插件的使用 本来还想说FQ了,结果实验半天没成功,最后才知道公司已经邮件通知了,郁闷,FQ后我把我的插件重新装了一遍,觉得好像又懂了好多,记载下来我装的一些东西和有关PostMan ...

  7. ArrayList和Array区别

    1)精辟阐述:可以将 ArrayList想象成一种“会自动扩增容量的Array”. 2)Array([]):最高效:但是其容量固定且无法动态改变:     ArrayList:  容量可动态增长:但牺 ...

  8. 2017北京国庆刷题Day2 morning

    期望得分:100+100+40=240 实际得分:100+40+0=140 T1 一道图论神题(god) Time Limit:1000ms   Memory Limit:128MB 题目描述 LYK ...

  9. NOIP 2014 提高组 Day1

    期望得分:100+100+50=250 实际得分:100+100+50=250 此次NOIP  ZJ省一分数线:500,SD:345 https://www.luogu.org/problem/lis ...

  10. hdu 4940 Destroy Transportation system (无源汇上下界可行流)

    Destroy Transportation system Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 ...