37.递推:Pell数列
总时间限制:
3000ms
内存限制:
65536kB
描述
Pell数列a1,
a2, a3, ...的定义是这样的,a1 =
1, a2 = 2, ... ,
an = 2 * an −
1 + an -
2 (n > 2)。
给出一个正整数k,要求Pell数列的第k项模上32767是多少。
输入
第1行是测试数据的组数n,后面跟着n行输入。每组测试数据占1行,包括一个正整数k
(1 ≤ k < 1000000)。
输出
n行,每行输出对应一个输入。输出应是一个非负整数。
样例输入
2
1
8
样例输出
1
408
代码:
#include
using namespace std;
#include
#include
const int maxn=pow(10,6)+100;
int a[1000010];
int maxx=-maxn,p[100]={0};
int main()
{
int n,k;
scanf("%d",&n);
for(int i=1;i<=n;++i)
{
scanf("%d",&p[i]);
if(p[i]>maxx)
maxx=p[i];
}
a[1]=1;a[2]=2;
for(int i=3;i<=maxx;++i)
{
a[i]=(2*a[i-1]+a[i-2])2767;
}
for(int i=1;i<=n;++i)
{
printf("%d\n",a[p[i]]);
}
return 0;
}
37.递推:Pell数列的更多相关文章
- Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)
Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...
- Luogu 1962 斐波那契数列(矩阵,递推)
Luogu 1962 斐波那契数列(矩阵,递推) Description 大家都知道,斐波那契数列是满足如下性质的一个数列: f(1) = 1 f(2) = 1 f(n) = f(n-1) + f(n ...
- UVA1646-Edge Case(递推+斐波那契数列)
Problem UVA1646-Edge Case Time Limit: 3000 mSec Problem Description Input For each test case, you ge ...
- 递推-练习1--noi1760 菲波那契数列(2)
递推-练习1--noi1760 菲波那契数列(2) 一.心得 二.题目 1760:菲波那契数列(2) 总时间限制: 1000ms 内存限制: 65536kB 描述 菲波那契数列是指这样的数列: 数 ...
- Loj 538 递推数列
Loj 538 递推数列 出题人:这题提高难度吧.于是放在了%你赛的 \(D1T2\) . 递推式为 \(a_i=k*a_{i-1}+a_{i-2}\) , 注意到 \(k\in \mathbb{N_ ...
- 计蒜客 28319.Interesting Integers-类似斐波那契数列-递推思维题 (Benelux Algorithm Programming Contest 2014 Final ACM-ICPC Asia Training League 暑假第一阶段第二场 I)
I. Interesting Integers 传送门 应该是叫思维题吧,反正敲一下脑壳才知道自己哪里写错了.要敢于暴力. 这个题的题意就是给你一个数,让你逆推出递推的最开始的两个数(假设一开始的两个 ...
- POJ3070 斐波那契数列递推 矩阵快速幂模板题
题目分析: 对于给出的n,求出斐波那契数列第n项的最后4为数,当n很大的时候,普通的递推会超时,这里介绍用矩阵快速幂解决当递推次数很大时的结果,这里矩阵已经给出,直接计算即可 #include< ...
- The Nth Item 南昌网络赛(递推数列,分段打表)
The Nth Item \[ Time Limit: 1000 ms \quad Memory Limit: 262144 kB \] 题意 给出递推式,求解每次 \(F[n]\) 的值,输出所有 ...
- [每日一题2020.06.14]leetcode #70 爬楼梯 斐波那契数列 记忆化搜索 递推通项公式
题目链接 题意 : 求斐波那契数列第n项 很简单一道题, 写它是因为想水一篇博客 勾起了我的回忆 首先, 求斐波那契数列, 一定 不 要 用 递归 ! 依稀记得当年校赛, 我在第一题交了20发超时, ...
随机推荐
- 24、简述Python的深浅拷贝以及应用场景
深浅拷贝的原理 深浅拷贝用法来自copy模块. 导入模块:import copy 浅拷贝:copy.copy 深拷贝:copy.deepcopy 字面理解:浅拷贝指仅仅拷贝数据集合的第一层数据,深拷贝 ...
- DataFrame衍生新特征操作
1.DataFrame中某一列的值衍生为新的特征 #将LBL1特征的值衍生为one-hot形式的新特征 piao=df_train_log.LBL1.value_counts().index #先构造 ...
- layui结合mybatis的pagehelper插件的分页通用的方法
总体思路: 1.前台查询的时候将当前页和页大小传到后台 2.后台将当前页,页大小以及数据与数据总数返回前台,前台显示完表格完数据之后显示分页插件. 前台页面: 准备查询条件的表单,与数据表格,分页di ...
- CTF AWD模式攻防Note
###0x01 AWD模式 Attack With Defence,简而言之就是你既是一个hacker,又是一个manager.比赛形式:一般就是一个ssh对应一个web服务,然后flag五分钟一轮, ...
- 新一代的USB 3.0传输规格
通用序列总线(USB) 从1996问世以来,一统个人电脑外部连接界面,且延伸至各式消费性产品,早已成为现代人生活的一部分.2000年发表的USB 2.0 High-speed规格,提供了480Mbps ...
- jquery ajax的再次封装,简化操作
1.封装的ajax var funUrl="" // 每个请求地址相同的部分 function queryData(url,params,success,error){ url ...
- MYSQL三种安装方式--二进制包安装
1. 把二进制包下载到/usr/local/src下 2. 如果是tar.gz包,则使用tar zxvf 进行解压 如果是tar包,则可以使用tar xvf 进行解压 3. $ mv mysql-5. ...
- C# winform或控制台Properties.Settings.Default的使用及存储位置
C# winform或控制台Properties.Settings.Default的使用及存储位置 作者的程序 是MmPS.ClientForm.exe,使用Properties.Settings.D ...
- 4、GitLab 创建、删除、修改项目
一.gitLab创建项目 1.创建用户组 2.填写组信息后单击“Create group” 其中:“Group path”将显示在git路径中 3.选择需要加入该组的“用户”和“角色”后点击“Add ...
- IEEEXtreme 10.0 - Mysterious Maze
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Mysterious Maze 题目来源 第10届IEEE极限编程大赛 https://www.hacker ...