You can Solve a Geometry Problem too

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6425    Accepted Submission(s): 3099

Problem Description
Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare a geometry problem for this final exam. According to the experience of many ACMers, geometry problems are always much trouble, but this problem is very easy, after all we are now attending an exam, not a contest :)
Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.

Note:
You can assume that two segments would not intersect at more than one point. 

 
Input
Input contains multiple test cases. Each test case contains a integer N (1=N<=100) in a line first, and then N lines follow. Each line describes one segment with four float values x1, y1, x2, y2 which are coordinates of the segment’s ending. 
A test case starting with 0 terminates the input and this test case is not to be processed.
 
Output
For each case, print the number of intersections, and one line one case.
 
Sample Input
2 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 3 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.000 0.00 0.00 1.00 0.00 0
 
Sample Output
1 3
 
Author
lcy
 
Recommend
We have carefully selected several similar problems for you:  1392 2108 2150 1348 1147 

 
  计算几何:判断两线段是否相交
  很简单的一道题,套上模板之后直接遍历判断每对线段是否相交,相交就计数,最后输出计数就是交点数。这种题的思路就是做两个验证,这两个验证学名叫快速排斥实验和跨立实验,分别有4个判断和2个判断,只有这两个实验都通过才能说这两条线段相交。详见:
  
 判断两线段是否相交模板:

 struct Point{
double x,y;
};
struct Line{
Point p1,p2;
};
double Max(double a,double b)
{
return a>b?a:b;
}
double Min(double a,double b)
{
return a<b?a:b;
}
double xmulti(Point p1,Point p2,Point p0)
{
return (p1.x-p0.x)*(p2.y-p0.y)-(p1.y-p0.y)*(p2.x-p0.x);
}
bool inter(Line l1,Line l2)
{
if( Min(l2.p1.x,l2.p2.x)<=Max(l1.p1.x,l1.p2.x) &&
Min(l2.p1.y,l2.p2.y)<=Max(l1.p1.y,l1.p2.y) &&
Min(l1.p1.x,l1.p2.x)<=Max(l2.p1.x,l2.p2.x) &&
Min(l1.p1.y,l1.p2.y)<=Max(l2.p1.y,l2.p2.y) &&
xmulti(l1.p1,l2.p2,l2.p1)*xmulti(l1.p2,l2.p2,l2.p1)<= &&
xmulti(l2.p1,l1.p2,l1.p1)*xmulti(l2.p2,l1.p2,l1.p1)<= )
return true;
else
return false;
}
 本题代码:
 #include <iostream>
using namespace std;
struct Point{
double x,y;
};
struct Line{
Point p1,p2;
};
double Max(double a,double b)
{
return a>b?a:b;
}
double Min(double a,double b)
{
return a<b?a:b;
}
double xmulti(Point p1,Point p2,Point p0)
{
return (p1.x-p0.x)*(p2.y-p0.y)-(p1.y-p0.y)*(p2.x-p0.x);
}
bool inter(Line l1,Line l2)
{
if( Min(l2.p1.x,l2.p2.x)<=Max(l1.p1.x,l1.p2.x) &&
Min(l2.p1.y,l2.p2.y)<=Max(l1.p1.y,l1.p2.y) &&
Min(l1.p1.x,l1.p2.x)<=Max(l2.p1.x,l2.p2.x) &&
Min(l1.p1.y,l1.p2.y)<=Max(l2.p1.y,l2.p2.y) &&
xmulti(l1.p1,l2.p2,l2.p1)*xmulti(l1.p2,l2.p2,l2.p1)<= &&
xmulti(l2.p1,l1.p2,l1.p1)*xmulti(l2.p2,l1.p2,l1.p1)<= )
return true;
else
return false;
}
int main()
{
int N;
Line l[];
while(cin>>N){
if(N==) break;
for(int i=;i<=N;i++)
cin>>l[i].p1.x>>l[i].p1.y>>l[i].p2.x>>l[i].p2.y;
int c = ;
for(int i=;i<=N-;i++)
for(int j=i+;j<=N;j++)
if(inter(l[i],l[j]))
c++;
cout<<c<<endl;
}
return ;
}

Freecode : www.cnblogs.com/yym2013

hdu 1086:You can Solve a Geometry Problem too(计算几何,判断两线段相交,水题)的更多相关文章

  1. You can Solve a Geometry Problem too(判断两线段是否相交)

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  2. HDU 1086 You can Solve a Geometry Problem too( 判断线段是否相交 水题 )

    链接:传送门 题意:给出 n 个线段找到交点个数 思路:数据量小,直接暴力判断所有线段是否相交 /*************************************************** ...

  3. hdu 1086 You can Solve a Geometry Problem too

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  4. hdu 1086 You can Solve a Geometry Problem too (几何)

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  5. hdu 1086 You can Solve a Geometry Problem too 求n条直线交点的个数

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  6. (hdu step 7.1.2)You can Solve a Geometry Problem too(乞讨n条线段,相交两者之间的段数)

    称号: You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/ ...

  7. hdu 1086 You can Solve a Geometry Problem too [线段相交]

    题目:给出一些线段,判断有几个交点. 问题:如何判断两条线段是否相交? 向量叉乘(行列式计算):向量a(x1,y1),向量b(x2,y2): 首先我们要明白一个定理:向量a×向量b(×为向量叉乘),若 ...

  8. hdu 1147:Pick-up sticks(基本题,判断两线段相交)

    Pick-up sticks Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  9. You can Solve a Geometry Problem too (hdu1086)几何,判断两线段相交

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3276 ...

随机推荐

  1. Java之JVM调优案例分析与实战(3) - 堆外内存导致的溢出错误

    环境:基于B\S的点子考试系统,为了发现客户端能实时地从服务端接收考试数据,系统使用了逆向AJAX技术(也称Comet或Server Side Push),选用CometD1.1.1作为服务端推送框架 ...

  2. [Done]java.sql.SQLException: Connection is read-only. Queries leading to data modification are not allowed

    java.sql.SQLException: Connection is read-only. Queries leading to data modification are not allowed ...

  3. 18-spring学习-AOP深入操作

    范例:定义一个参数拦截 package com.Spring.aop; import org.springframework.stereotype.Component; @Component publ ...

  4. Python title() 方法

    描述 Python title() 方法返回"标题化"的字符串,就是说所有单词都是以大写开始,其余字母均为小写. 语法 title() 方法语法: S.title() 参数 无. ...

  5. 在Quartus使用TCL脚本文件配制管脚 《本人亲测》

    方法一:Import Assignments步骤1: 使用记事本或类似软件新建一个txt文件(或csv文件),按如下格式编写管脚分配内容(不同的开发版,其内容也不同,本文以我使用的DIY_DE2开发板 ...

  6. [原]SQL相关路径查询脚本

    --1.查询机器名 SELECT @@servername AS 机器名称 --查询已安装的SQL实例名 SELECT * FROM Sys.Servers --2.查询SQL安装路径 DECLARE ...

  7. Atitit.软件仪表盘(8)--os子系统--资源占用监测

    Atitit.软件仪表盘(8)--os子系统--资源占用监测 CPU使用 内存使用 磁盘队列 任务管理器 网络速度 插件列表( 资源管理器插件,浏览器插件,360optim) 启动项管理  (350) ...

  8. Linux进程间通信的几种方式总结--linux内核剖析(七)

    进程间通信概述 进程通信的目的 传输数据 一个进程须要将它的数据发送给还有一个进程.发送的数据量在一个字节到几M字节之间 共享数据 多个进程想要操作共享数据,一个进程对共享数据 通知事 一个进程须要向 ...

  9. UIViewController的生命周期及iOS程序执行顺序 和ios6 处理内存警告

    当一个视图控制器被创建,并在屏幕上显示的时候. 代码的执行顺序1. alloc                                   创建对象,分配空间2.init (initWithN ...

  10. StringJDBC更改数据库的两种方式

    方法一jdbcTemplate.update("INSERT INTO USER VALUES(?, ?, ?, ?)", new Object[] {user.getId(), ...