hdu 1086:You can Solve a Geometry Problem too(计算几何,判断两线段相交,水题)
You can Solve a Geometry Problem too
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6425 Accepted Submission(s): 3099
Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.
Note:
You can assume that two segments would not intersect at more than one point.
A test case starting with 0 terminates the input and this test case is not to be processed.
struct Point{
double x,y;
};
struct Line{
Point p1,p2;
};
double Max(double a,double b)
{
return a>b?a:b;
}
double Min(double a,double b)
{
return a<b?a:b;
}
double xmulti(Point p1,Point p2,Point p0)
{
return (p1.x-p0.x)*(p2.y-p0.y)-(p1.y-p0.y)*(p2.x-p0.x);
}
bool inter(Line l1,Line l2)
{
if( Min(l2.p1.x,l2.p2.x)<=Max(l1.p1.x,l1.p2.x) &&
Min(l2.p1.y,l2.p2.y)<=Max(l1.p1.y,l1.p2.y) &&
Min(l1.p1.x,l1.p2.x)<=Max(l2.p1.x,l2.p2.x) &&
Min(l1.p1.y,l1.p2.y)<=Max(l2.p1.y,l2.p2.y) &&
xmulti(l1.p1,l2.p2,l2.p1)*xmulti(l1.p2,l2.p2,l2.p1)<= &&
xmulti(l2.p1,l1.p2,l1.p1)*xmulti(l2.p2,l1.p2,l1.p1)<= )
return true;
else
return false;
}
#include <iostream>
using namespace std;
struct Point{
double x,y;
};
struct Line{
Point p1,p2;
};
double Max(double a,double b)
{
return a>b?a:b;
}
double Min(double a,double b)
{
return a<b?a:b;
}
double xmulti(Point p1,Point p2,Point p0)
{
return (p1.x-p0.x)*(p2.y-p0.y)-(p1.y-p0.y)*(p2.x-p0.x);
}
bool inter(Line l1,Line l2)
{
if( Min(l2.p1.x,l2.p2.x)<=Max(l1.p1.x,l1.p2.x) &&
Min(l2.p1.y,l2.p2.y)<=Max(l1.p1.y,l1.p2.y) &&
Min(l1.p1.x,l1.p2.x)<=Max(l2.p1.x,l2.p2.x) &&
Min(l1.p1.y,l1.p2.y)<=Max(l2.p1.y,l2.p2.y) &&
xmulti(l1.p1,l2.p2,l2.p1)*xmulti(l1.p2,l2.p2,l2.p1)<= &&
xmulti(l2.p1,l1.p2,l1.p1)*xmulti(l2.p2,l1.p2,l1.p1)<= )
return true;
else
return false;
}
int main()
{
int N;
Line l[];
while(cin>>N){
if(N==) break;
for(int i=;i<=N;i++)
cin>>l[i].p1.x>>l[i].p1.y>>l[i].p2.x>>l[i].p2.y;
int c = ;
for(int i=;i<=N-;i++)
for(int j=i+;j<=N;j++)
if(inter(l[i],l[j]))
c++;
cout<<c<<endl;
}
return ;
}
Freecode : www.cnblogs.com/yym2013
hdu 1086:You can Solve a Geometry Problem too(计算几何,判断两线段相交,水题)的更多相关文章
- You can Solve a Geometry Problem too(判断两线段是否相交)
You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3 ...
- HDU 1086 You can Solve a Geometry Problem too( 判断线段是否相交 水题 )
链接:传送门 题意:给出 n 个线段找到交点个数 思路:数据量小,直接暴力判断所有线段是否相交 /*************************************************** ...
- hdu 1086 You can Solve a Geometry Problem too
You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3 ...
- hdu 1086 You can Solve a Geometry Problem too (几何)
You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3 ...
- hdu 1086 You can Solve a Geometry Problem too 求n条直线交点的个数
You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3 ...
- (hdu step 7.1.2)You can Solve a Geometry Problem too(乞讨n条线段,相交两者之间的段数)
称号: You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/ ...
- hdu 1086 You can Solve a Geometry Problem too [线段相交]
题目:给出一些线段,判断有几个交点. 问题:如何判断两条线段是否相交? 向量叉乘(行列式计算):向量a(x1,y1),向量b(x2,y2): 首先我们要明白一个定理:向量a×向量b(×为向量叉乘),若 ...
- hdu 1147:Pick-up sticks(基本题,判断两线段相交)
Pick-up sticks Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...
- You can Solve a Geometry Problem too (hdu1086)几何,判断两线段相交
You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3276 ...
随机推荐
- Android SDK 更新和下载慢怎么办?
博客搬家:因为各种原因,我如今的博客将首发于blog.mojijs.com, 能够百度搜索 "姜哥的墨迹技术博客" , 或者 点击这里 本文地址 http://blog.mojij ...
- 最大似然估计(MLE)与最大后验概率(MAP)
何为:最大似然估计(MLE): 最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”.可以通过采样,获取部分数据,然后通过最大似然估计来获取已知模型的参数. 最大似然估计 ...
- js表单验证控制代码大全
http://www.cnblogs.com/SAL2928/archive/2008/10/24/1319020.html目录: 1:js 字符串长度限制.判断字符长度.js限制输入.限制不能输入. ...
- 摘:C++日期时间与字符串间的转换
VC6中 CString sTime = _T("2007-10-26 13:20:30"); char *charTime = (LPSTR)(LPCTSTR)sTime; CS ...
- C#中Out和Ref參数修饰符
在编程过程中对于函数之间的參数的传递一般分为两种:传值和传地址. 以下为大家分析一下. 传值 比方你又一份文档,假设採用传值的话.相当于我复制了一份,因此我对我这份文档的改动都不会影响到你的那份.假设 ...
- ajax提交数据处理总结
一:Ajax中Get请求与Post请求的区别 http://www.cnblogs.com/oneword/archive/2011/06/06/2073533.html 二:ajax分页: 360 ...
- uploadify onSelect
uploadify onSelect [return false]停止选择 $("#fileEleId").uploadify({ 'width': _option.width, ...
- Ubuntu14.04单机版kubernetes安装指导
转:http://dockone.io/article/950 概述本文主要讲述如何在Ubuntu系统上安装kubernetes,网络上也有许多相关的文章,感觉都不是很清晰,这里我将自己的安装实践给大 ...
- poj1936
非连续子串匹配题,直接模拟 /** \brief poj 1936 * * \param date 2014/8/5 * \param state AC * \return memory 804k t ...
- 基于redis的分布式缓存disgear开源到github上了
disgear是笔者参考solrcloud架构基于redis实现的分布式的缓存,支持数据切分到多台机器上,支持HA,支持读写分离和主节点失效自动选举,目前把它开放到github上,开放给大家 gith ...