题意:给出k个二叉搜索树的前序序列,判断该树是否为红黑树。

红黑树的定义:

  1. 结点的颜色非红即黑
  2. 根结点的颜色必须是黑色
  3. 每个叶子结点(指的是空结点,图中并没有画出来)都是黑色的
  4. 如果某个结点为红色,则它的孩子节点必须是黑色的。(表明从每个叶子到根的所有路径上不能有两个连续的红色节点。)
  5. 从任一节点到其每个叶子的所有简单路径都包含相同数目的黑色节点。(所有最长的路径都有相同数目的黑色节点,这就表明了没有路径能多于任何其他路径的两倍长。)
思路:
红黑树的判断:
  1. 根结点是否为黑色。
  2. 每条路径的黑色节点相等。统计出一条路径的黑色节点的个数,然后与其他路径黑色节点个数进行比较。
  3. 不存在连续的红色节点,判断红色节点的孩子节点是否为红色。
代码:

#include <cstdio>
#include <algorithm>
using namespace std;
#define BLACK 1
#define RED 0

struct Node{
    int val;
    int color;
    Node *lchild,*rchild;
    Node(int v){
        val=v>?v:-v;
        color=v>?BLACK:RED;
        lchild=rchild=nullptr;
    }
};

void insert(Node* &root,int val)
{
    if(root==nullptr){
        root=new Node(val);
        return;
    }
    if(abs(val)<root->val) insert(root->lchild,val);
    else insert(root->rchild,val);
}

//深度遍历,计算黑色结点的个数以及判断是否会出现连续两个红色结点
;
bool flag=true;
void dfs(Node* root,int cnt)
{
    if(root==nullptr){
        if(cnt!=totalBlackCnt) flag=false;
        return;
    }
    if(root->color==BLACK) cnt++;
    else{
        if(root->lchild && root->lchild->color==RED) flag=false;
        if(root->rchild && root->rchild->color==RED) flag=false;
    }
    //printf("val:%d color:%d cnt:%d\n",root->val,root->color,cnt);
    dfs(root->lchild,cnt);
    dfs(root->rchild,cnt);
}

int main()
{   int k,n,val;
    scanf("%d",&k);
    while(k--){
        scanf("%d",&n);
        Node* root=nullptr;
        ;i<n;i++){
            scanf("%d",&val);
            insert(root,val);
        }
        if(root->color==RED){
            printf("No\n");
            continue;
        }
        totalBlackCnt=;//记录从根结点到任意一个叶结点的简单路径上黑色结点的个数
        //此处计算最左端的路径
        Node* p=root;
        while(p){
            if(p->color==BLACK) totalBlackCnt++;
            p=p->lchild;
        }
        flag=true;//初始化
        dfs(root,);
        printf("%s\n",flag?"Yes":"No");
    }
    ;
}
【疑问】按照我自己一开始的想法,dfs()函数我是这么写的,然而这么写会有两个测试点通不过!

void dfs(Node* root,int cnt)
{
    if(root==nullptr) return;
    if(root->color==BLACK) cnt++;
    else{
        if(root->lchild && root->lchild->color==RED) flag=false;
        if(root->rchild && root->rchild->color==RED) flag=false;
    }
    if(root->lchild==nullptr && root->rchild==nullptr){
        if(cnt!=totalBlackCnt) flag=false;
    }
    //printf("val:%d color:%d cnt:%d\n",root->val,root->color,cnt);
    dfs(root->lchild,cnt);
    dfs(root->rchild,cnt);
}

【分析】事实上,之所以会这么写,是因为对红黑树的性质(3)还没有真正理解。一开始,对题目给出的这个条件就没搞明白,看了《算法导论》,它上面是这么写的:

树中的每个结点包含5个属性:color,key,left,right,parent。如果一个孩子没有子结点或父结点,则该结点相应指针属性的值为NULL。我们可以把这些NULL视为指向二叉搜索树的叶结点(外部结点)的指针,而把带关键字的结点视为树的内部结点。

因此,对性质(5)“从任一节点到其每个叶子的所有简单路径都包含相同数目的黑色节点”的真正理解是——这里的叶子结点是空结点,而不是我认为的“没有孩子的结点”。事实上,我们常常把注意力放在内部结点上,因为它存储了关键字的值,而忽略叶结点。但是基本定义,基本概念不能搞混!比如下面图1中的结点8,请问它是叶节点吗?其实不是,因为它也有左右孩子,只不过它的左右孩子不存关键字,为NULL罢了。类似的思想在判断一棵树是否为完全二叉树中也应用到了。见例题

按照我错误的写法,程序会认为以下这样的也是红黑树:

(图1)

然而,这棵树并不是合法的红黑树。根据定义,它真正的形状应该是画成下面这个样子:

(图2)

可以看到,“7->11->null”这条路径中黑色结点的个数与其他路径不等。而按照我错误的写法来理解(即图1),因为结点11不是叶子结点,所以根本不会考虑这条路径上的情况,因此造成错误。

理解了定义之后,修改成如下便可AC,当然,我觉得这种写法不太好,还是上面完整代码中那个版本最佳!

void dfs(Node* root,int cnt)
{
    if(root==nullptr) return;
    if(root->color==BLACK) cnt++;
    else{
        if(root->lchild && root->lchild->color==RED) flag=false;
        if(root->rchild && root->rchild->color==RED) flag=false;
    }
    if(root->lchild==nullptr || root->rchild==nullptr)
        if(cnt!=totalBlackCnt) flag=false;
    }
    dfs(root->lchild,cnt);
    dfs(root->rchild,cnt);
}

1135 Is It A Red-Black Tree的更多相关文章

  1. [转载] 红黑树(Red Black Tree)- 对于 JDK TreeMap的实现

    转载自http://blog.csdn.net/yangjun2/article/details/6542321 介绍另一种平衡二叉树:红黑树(Red Black Tree),红黑树由Rudolf B ...

  2. Red–black tree ---reference wiki

    source address:http://en.wikipedia.org/wiki/Red%E2%80%93black_tree A red–black tree is a type of sel ...

  3. Red Black Tree 红黑树 AVL trees 2-3 trees 2-3-4 trees B-trees Red-black trees Balanced search tree 平衡搜索树

    小结: 1.红黑树:典型的用途是实现关联数组 2.旋转 当我们在对红黑树进行插入和删除等操作时,对树做了修改,那么可能会违背红黑树的性质.为了保持红黑树的性质,我们可以通过对树进行旋转,即修改树中某些 ...

  4. CF1208H Red Blue Tree

    CF1208H Red Blue Tree 原本应该放在这里但是这题过于毒瘤..单独开了篇blog 首先考虑如果 $ k $ 无限小,那么显然整个树都是蓝色的.随着 $ k $ 逐渐增大,每个点都会有 ...

  5. 2018 ICPC青岛网络赛 B. Red Black Tree(倍增lca好题)

    BaoBao has just found a rooted tree with n vertices and (n-1) weighted edges in his backyard. Among ...

  6. 计蒜客 Red Black Tree(树形DP)

    You are given a rooted tree with n nodes. The nodes are numbered 1..n. The root is node 1, and m of ...

  7. Red Black Tree(红黑树)

    (修改于 2018-05-06 15:53:22 还差删除维护操作.层序遍历没完成.维护操作没完成不想写层序遍历怎么办...) 今天下午完成了红黑树的插入的维护操作,但删除的维护操作还没有解决,删除的 ...

  8. ZOJ - 4048 Red Black Tree (LCA+贪心) The 2018 ACM-ICPC Asia Qingdao Regional Contest, Online

    题意:一棵树上有m个红色结点,树的边有权值.q次查询,每次给出k个点,每次查询有且只有一次机会将n个点中任意一个点染红,令k个点中距离红色祖先距离最大的那个点的距离最小化.q次查询相互独立. 分析:数 ...

  9. Red Black Tree java.util.TreeSet

    https://docs.oracle.com/javase/9/docs/api/java/util/SortedMap.html public interface SortedMap<K,V ...

  10. 简单聊聊红黑树(Red Black Tree)

    ​ 前言 众所周知,红黑树是非常经典,也很非常重要的数据结构,自从1972年被发明以来,因为其稳定高效的特性,40多年的时间里,红黑树一直应用在许多系统组件和基础类库中,默默无闻的为我们提供服务,身边 ...

随机推荐

  1. window环境下创建Flask项目需要安装常见模块命令

    安装Flask环境 pip install flask==0.10.1 使用命令行操作 pip install flask-script 创建表单 pip install flask-wtf 操作数据 ...

  2. root用户下使用sqlplus登录Oracle数据库

    1.把环境变量添加到root用户的环境变量里面2.执行 chmod -R 6777 /tmp           chmod -R 6777 /usr/tmp           chmod -R 6 ...

  3. Android 屏幕密度适配

    Android Icon Size and Location for Apps   分辨率 DPI Density scale 1dp对应像素 1dp对应物理尺寸 Location Icon Size ...

  4. 安装Spring报错An error occurred while collecting items to be installed

    原因主要是eclipse和spring版本之间的匹配问题. An error occurred while collecting items to be installed session conte ...

  5. 关于Spinlock机制的一点思考

    存在两段代码同时在多核上执行的情况,这时候才需要一个真正的锁来宣告代码对资源的占有. 几个核可能会同时access临界区,这时的spinlock是如何实现的呢? 要用到CPU提供的一些特殊指令,对lo ...

  6. TypeError: pivot_table() got an unexpected keyword argument 'rows'

    利用Python进行数据分析>第二章,处理MovieLens 1M数据集,有句代码总是报错: mean_rating = data.pivot_table('rating', rows='tit ...

  7. asp.net 输入框在chrome中无法关闭自动提示

    将asp:TextBox 的属性AutoCompleteType设为Disabled,希望在chrome中点击记住用户名密码后输入框不再自动提示,但不起作用. 解决方法: <asp:TextBo ...

  8. C程序fork进程导致PHP执行不退出

    /********************************************************************* * C程序fork进程导致PHP执行不退出 * 说明: * ...

  9. XMPP协议相关知识

    XMPP协议的组成 主要的XMPP 协议范本及当今应用很广的XMPP 扩展: RFC 3920 XMPP:核心.定义了XMPP 协议框架下应用的网络架构,引入了XML Stream(XML 流)与XM ...

  10. Canvas 与 SVG 的区别

    这个说实话,我只用过canvas画过一些简单的图形,复杂的不懂,之所以列出来,是因为之前在面试中有被问到,在这里mark一下,后期深化. 以下的内容全部来自于w3school http://www.w ...