Dual-polarity supply provides ±12V from one IC

VC (Pin 1): Error Amplifier Output Pin. Tie external compensation network to this pin or use the internal compensation network by shorting the VC pin to the COMP pin.
External compensation consists of placing a resistor and capacitor in series from VC to GND. Typical capacitor range is from 90pF to 270pF. Typical resistor range is from 25k to 120k.

FB (Pin 2): Feedback Pin. Reference voltage is 1.25V. Connect resistive divider tap here. Minimize trace area at FB. Set VOUT according to VOUT = 1.25 • (1+R1/R2).

SHDN (Pin 3): Shutdown Pin. Tie to 2.4V or more to enable device. Ground to shut down. Do not float this pin.

GND (Pin 4, Exposed Pad): Ground. Tie both Pin 4 and the exposed pad directly to local ground plane. The ground metal to the exposed pad should be wide for better heat dissipation.

Multiple vias (local ground plane ↔ ground backplane) placed close to the exposed pad can further aid in reducing thermal resistance.

SW (Pin 5): Switch Pin. This is the collector of the internal NPN power switch. Minimize the metal trace area connected to this pin to minimize EMI.

VIN (Pin 6): Input Supply Pin. Must be locally bypassed.

COMP (Pin 7): Internal Compensation Pin. Provides an internal compensation network. Tie directly to the VC pin for internal compensation. Tie to GND if not used.

SS (Pin 8): Soft-Start Pin. Place a soft-start capacitor here. Upon start-up, 4µA of current charges the capacitor to 1.5V. Use a larger capacitor for slower start-up. Leave floating if not in use.

The conventional way to produce dual (positive and negative) outputs from a single positive input is to use a transformer. Although such designs are relatively simple, the transformer inherently introduces the problem of size. It can be challenging to fit a transformer into an application in which it's important to minimize the circuit footprint and height. The circuit in Figure 1 generates ±5V from a 3 to 10V input and fits into applications that lack the room to accommodate a transformer. The circuit uses a topology that allows the disconnection of both outputs when the dc/dc converter is in shutdown mode; thus, the quiescent current is low during shutdown (standby) mode. The circuit also produces a regulated positive and negative 5V, regardless of whether the input is higher or lower than 5V. Therefore, the circuit can operate from various input sources, such as a 3 to 4.2V lithium-ion battery or a 3.3 to 10V wall adapter. By slightly modifying the circuit, you can increase the input range to 2.5 to 16V and the output range to 3 to 12V.

The 2.7-MHz switching frequency of the dc/dc converter allows the use of small, low-profile external components (input/output capacitors and inductors). Using three small inductors instead of one bulky transformer not only reduces the size and height of the converter, but also evenly distributes the power dissipation over the board, thus eliminating concentrated hot spots. The output-current capability of the circuit increases as the input voltage increases (higher input voltage, lower input current).Figure 2 shows the maximum output current versus the input voltage. The "both" curve represents the maximum allowable output current of both ±5V outputs when you load them with the same current. The "single" curve represents the maximum allowable output current of each output when you load either output alone. When the current from one output decreases, the current capability of the other output increases, as long as you do not exceed the current rating of the dc/dc converter.

Cross-load regulation is another important design consideration in this type of circuit. Because the –5V output does not have control of the dc/dc converter's PWM feedback, the –5V output voltage changes with output current. You can greatly improve the cross-load regulation by adding a 10- to 20-mA preload at each output. The preload ensures that the dc/dc converter operates in continuous-conduction mode, in which the inductor current is stable enough to provide constant current.Figure 3 shows the –5V output voltage regulation under different load conditions at the positive (Figure 3a) and negative (Figure 3b) outputs. In this case, to improve cross-load regulation, both the outputs connect to a 20-mA preload.

LT1946A-- Transformerless dc/dc converter produces bipolar outputs的更多相关文章

  1. PID DC/DC Converter Controller Using a PICmicro Microcontroller

    http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en011794 ...

  2. Practice safe dc/dc converter

    Short-circuit protection is an obvious requirement for a power supply, especially when its load conn ...

  3. Simple dc/dc converter increases available power in dual-voltage system

    The schematic in Figure 1 shows a way to increase the power available from a current-limited 5V supp ...

  4. Add margining capability to a dc/dc converter

    You can easily add margining capability—that is, the ability to digitally adjust the output voltage— ...

  5. [专业名词·硬件] 2、DC\DC、LDO电源稳压基本常识(包含基本原理、高效率模块设计、常见问题、基于nRF51822电源管理模块分析等)·长文

    综述先看这里 第一节的1.1简单介绍了DC/DC是什么: 第二节是关于DC/DC的常见的疑问答疑,非常实用: 第三节是针对nRF51822这款芯片电源管理部分的DC/DC.LDO.1.8的详细分析,对 ...

  6. DC/DC与LDO的差别

    转自:http://bbs.eetop.cn/thread-459121-1-1.html 在平时的学习中,我们都有接触LDO和DC/DC这一类的电源产品,但作为学生的我们队这些东西可能了解不够深刻, ...

  7. DC DC降壓變換器ic 工作原理

    目前DC/DC轉化器大致可分為:升壓型dc dc變化器.降壓型dc dc變化器及可升壓又可降壓dc dc變換器.我們今天主要提一下降壓型dc dc變換器的原理: 見下圖降壓變換器原理圖如圖1所示, 當 ...

  8. DC DC電路電感的選擇

    注:只有充分理解電感在DC/DC電路中發揮的作用,才能更優的設計DC/DC電路.本文還包括對同步DC/DC及異步DC/DC概念的解釋.   DCDC電路電感的選擇 簡介 在開關電源的設計中電感的設計為 ...

  9. (笔记)电路设计(十一)之DC/DC电源转换方案设计应用

    十大 法则之一:搞懂什么是DC/DC电源以及DC/DC转换电路分类 DC/DC电源电路又称为DC/DC转换电路,其主要功能就是进行输入输出电压转换.一般我们把输入电源电压在72V以内的电压变换过程称为 ...

随机推荐

  1. 链接 DB App.config 解析

    <?xml version="1.0" encoding="utf-8"?><configuration> <startup> ...

  2. css 水平、垂直居中

    水平居中 行内元素 行内元素:(img.span.文字等行内元素),通过在父级元素设置 text-align:center 使元素水平居中. 块级元素 块级元素:(div.p.h1...h6.ul.l ...

  3. .NET连接Oracle的方法

    .NET连接Oracle的方法 方式1:直接利用.NET的oracle驱动连接 引用System.data.oracleclient; using System.data.oracleclient; ...

  4. Transport failed: java.io.EOFException

    ActiveMQ服务端有时会报Transport failed: java.io.EOFException这样的错误,这是由客户端丢失连接并反复尝试连接导致的,不是什么大问题,有时网络波动就会产生这种 ...

  5. anaconda不错的

  6. codeforce 1A Theatre Square

    A. Theatre Square Theatre Square in the capital city of Berland has a rectangular shape with the siz ...

  7. [实战]MVC5+EF6+MySql企业网盘实战(8)——文件下载、删除

    写在前面 上篇文章通过iframe实现了文件的无刷新上传.这篇我们将实现文件的下载与删除. 系列文章 [EF]vs15+ef6+mysql code first方式 [实战]MVC5+EF6+MySq ...

  8. Deepin 2015 火狐 Firefox安装Flash

    1.sudo apt-get install flashplugin-nonfree 2.至Abobe官网下载最新的Linux版本flash安装包,选择.tar.gz类型,下载(https://get ...

  9. 429.N叉树的层次遍历

    给定一个 N 叉树,返回其节点值的层序遍历. (即从左到右,逐层遍历). 例如,给定一个 3叉树 : 返回其层序遍历: [ [1], [3,2,4], [5,6] ] 说明: 树的深度不会超过 100 ...

  10. Python编程举例-iter和next结合定制可迭代对象

    class Foo: def __init__(self,n): self.n = n def __iter__(self): return self def __next__(self): if s ...