【DP】【P5007】 DDOSvoid 的疑惑
Description
给定一棵以 1 为根的有根树,定义树的一个毒瘤集为一个集合,并且集合中任意两个元素之间不存在祖先与后代关系。
定义一个毒瘤集的毒瘤指数为集合内所有元素的价值之和
要求给定树的所有毒瘤集的毒瘤指数之和,答案对 100000007 取模。
但这个问题太难了,所以我们考虑化简。
因为点的编号跟它毒瘤指数密切相关,所以我们将会再给出一个整数 T,T = 1 表示 i 号点的毒瘤指数为 i,T = 0,表示所有点的毒瘤指数都是 1
Input
第一行两个整数 n、T,表示这棵树有 n 个节点。
接下来 n -1 行,每行两个整数 x 和 y,表示有一条边,连接 x 和 y。
Output
输出一个整数,表示答案。
Hint
\(Forall:\)
\(0~\leq~n~\leq~10^6~,~T~\leq~1\)
Solution
数数题,考虑DP。
设\(f_u\)是以\(u\)为根的子树,先考虑 \(T~=~0\) 的情况
当点\(u\)只有两个儿子 \(v_1~,~v_2\) 的时候,显然 \(f_u~=~f_{v_1}~+~f_{v_2}~+~f_{v_1}~\times~f_{v_2}~+~1\)
考虑\(u\)有多个儿子的时候也类似,设 \(g_j\) 为考虑点 \(u\) 的前\(j\)个子树的集合数,于是
\(g_j~=~g_{j-1}~\times~f_v~+~g_j~+~f_v\)
考虑 \(T~\neq~0\) 的情况
设 \(f_u\) 为以 \(u\) 为根的ans,\(g_u\) 为以 \(u\) 为根的集合个数
则
\]
\]
复杂度 \(O(n)\) 。听说有人用nlogn水过去了?
Code
#include <cstdio>
#ifdef ONLINE_JUDGE
#define freopen(a, b, c)
#endif
#define rg register
#define ci const int
#define cl const long long
typedef long long int ll;
namespace IPT {
const int L = 1000000;
char buf[L], *front=buf, *end=buf;
char GetChar() {
if (front == end) {
end = buf + fread(front = buf, 1, L, stdin);
if (front == end) return -1;
}
return *(front++);
}
}
template <typename T>
inline void qr(T &x) {
rg char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
if (lst == '-') x = -x;
}
template <typename T>
inline void ReadDb(T &x) {
rg char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch = IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = x * 10 + (ch ^ 48), ch = IPT::GetChar();
if (ch == '.') {
ch = IPT::GetChar();
double base = 1;
while ((ch >= '0') && (ch <= '9')) x += (ch ^ 48) * ((base *= 0.1)), ch = IPT::GetChar();
}
if (lst == '-') x = -x;
}
namespace OPT {
char buf[120];
}
template <typename T>
inline void qw(T x, const char aft, const bool pt) {
if (x < 0) {x = -x, putchar('-');}
rg int top=0;
do {OPT::buf[++top] = x % 10 + '0';} while (x /= 10);
while (top) putchar(OPT::buf[top--]);
if (pt) putchar(aft);
}
const int maxn = 1000010;
const int maxm = 2000010;
const int MOD = 100000007;
struct Edge {
int to, nxt;
};
Edge edge[maxm]; int hd[maxn], ecnt = 1;
inline void cont(ci from, ci to) {
Edge &e = edge[++ecnt];
e.to = to; e.nxt = hd[from]; hd[from] = ecnt;
}
int n, t;
int MU[maxn], frog[maxn], gorf[maxn];
void reading();
void dfs(ci, ci);
int main() {
freopen("1.in", "r", stdin);
qr(n); qr(t);
if (t) {
for (rg int i = 1; i <= n; ++i) MU[i] = i;
} else {
for (rg int i = 1; i <= n; ++i) MU[i] = 1;
}
reading();
dfs(1, 0); qw(frog[1], '\n', true);
return 0;
}
void reading() {
int a, b;
for (rg int i = 1; i < n; ++i) {
a = b = 0; qr(a); qr(b);
cont(a, b); cont(b, a);
}
}
void dfs(ci u, ci pree) {
for (int i = hd[u]; i; i = edge[i].nxt) if (i != pree) {
int &to = edge[i].to;
dfs(to, i ^ 1);
frog[u] = (1ll * frog[to] * gorf[u] % MOD + 1ll * frog[u] * gorf[to] % MOD + frog[to] + frog[u]) % MOD;
gorf[u] = (1ll * gorf[u] * gorf[to] % MOD + gorf[to] + gorf[u]) % MOD;
}
frog[u] = (frog[u] + MU[u]) % MOD;
gorf[u] = (gorf[u] + 1) % MOD;
}
Summary
这是一类非常经典的求树上方案数的题目,一般这类题目的解决方法是使用另一个数组表示“当前已经枚举到的”某些值,每枚举一个儿子单独计算贡献。
【DP】【P5007】 DDOSvoid 的疑惑的更多相关文章
- luogu5007 DDOSvoid 的疑惑 (树形dp)
我们来算每个点出现在的集合的个数 设f[i]为i出现的集合个数,g[i]是只选子树i 可以有多少种选法 那就有$g[i]=1+\prod\limits_{j是i的孩子}{g[j]} , f[i]=f[ ...
- 【DP】【CF855C】 Helga Hufflepuff's Cup
Description 给你一个树,可以染 \(m\) 个颜色,定义一个特殊颜色 \(k\) , 要求保证整棵树上特殊颜色的个数不超过 \(x\) 个.同时,如果一个节点是特殊颜色,那么它的相邻节点的 ...
- zzulioj--1719--小胖的疑惑(整数划分+dp打表)
1719: 小胖的疑惑 Time Limit: 1 Sec Memory Limit: 128 MB Submit: 108 Solved: 51 SubmitStatusWeb Board De ...
- 【CSP模拟】小凯的疑惑(DP)
首先,这道题正解的思路是从subtask2而得来的,所以先讲一下subtask2的做法. 因为保证答案不超过long long,所以直接求最大权独立集即可:dp[u][0]表示u点一定不能取的答案,d ...
- dp和px,那些不得不吐槽的故事——Android平台图
http://blog.sina.com.cn/s/blog_6499f8f101014ipq.html 一个优秀的手机软件,不仅要有精巧的功能,流畅的速度,让人赏心悦目的UI也往往是用户选择的重要理 ...
- 洛谷P1021邮票面值设计 [noip1999] dp+搜索
正解:dfs+dp 解题报告: 传送门! 第一眼以为小凯的疑惑 ummm说实话没看标签我还真没想到正解:D 本来以为这么多年前的noip应该不会很难:D 看来还是太菜了鸭QAQ 然后听说题解都可以被6 ...
- 洛谷 P1140 相似基因(DP)
传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 参考资料: [1]:https://www.cnblogs.com/real-l/p/9 ...
- dp和px,那些不得不吐槽的故事——Android平台图片文字元素单位浅析 (转)
一个优秀的手机软件,不仅要有精巧的功能,流畅的速度,让人赏心悦目的UI也往往是用户选择的重要理由.作为移动产品的PM,也需要了解一些在UI设计中的基本知识. 1. px和pt,一对好伙伴 在视觉设计中 ...
- HDU-6156 Palindrome Function(数位DP)
一.题目 二.思路 1.这是很明显的数位DP: 2.和以往数位DP不同的是,这里带了个进制进来,而以往做是纯十进制下或者纯二进制下做操作.但是,不管多少进制,原理都是一样的: 3.这里有个小坑,题目中 ...
随机推荐
- 1.5 JAVA的高并发编程
一.多线程的基本知识 1.1进程与线程的介绍(上个博客1.4中已经详细介绍进程和线程) 程序运行时在内存中分配自己独立的运行空间,就是进程 线程:它是位于进程中,负责当前进程中的某个具备独立运行资格的 ...
- Boss直聘邮件通知小脚本
Boss 基于Python3的找工作利器--Boss直聘来消息邮件通知, 自动发送简历脚本,O(∩_∩)O~ 无聊写的,因为有时候觉得找工作心急如焚,想自动回复自动发简历啊有木有~~~ github地 ...
- Immutable 常用API简介
本文主要整理了Immutable.js常用API的使用. Immutable 是什么? 关于Immutable的定义,官方文档是这样说的: Immutable data encourages pure ...
- 简评搜狗输入法(ios端)
首先说说为什么不使用iPhone自带的输入法呢,首先是词库不够丰富,好多简单的词语需要逐个字逐个字的选择,记忆功能不太好,其次是全键盘式的输入我不太习惯,还是九宫格的输入法比较简单,更方便快捷. 搜狗 ...
- 软工实践-Alpha 冲刺 (4/10)
队名:起床一起肝活队 组长博客:博客链接 作业博客:班级博客本次作业的链接 组员情况 组员1(队长):白晨曦 过去两天完成了哪些任务 描述: 很胖,刚学,照猫画虎做了登录与注册界面. 展示GitHub ...
- alpha6/10
队名:Boy Next Door 燃尽图 晗(组长) 今日完成 学习了css的一些基本操作. 明日工作 抽空把javascript的基本操作学习一下 还剩下哪些任务 微信API还有京东钱包的API. ...
- 技嘉主板+AMD CPU开启CPU虚拟化方法
硬件环境:技嘉AB350+AMD Ryzen 5 1600X 由于安装虚拟机的需要,所以要开启CPU的虚拟化. 首先进入BIOS. 然后如图:(M.I.T-高级频率设定-CPU超频进阶设置-SVM M ...
- Hbase的安装和配置
1,准备好hbase的linux环境下的压缩包,这里hadoop版本为hadoop2.5.0,hbase版本为 2,解压缩这个版本,不选src的,其实两个任一都行 进入到hbase安装包目录,我这里的 ...
- spring mvc $.ajax没有指定contentType ,导致后台无法接收到数据
var formData = JSON.stringify(this.rows); //将表单中的数据转为字符串 $.ajax({ type: "post", url: 'http ...
- Mysql的表名/字段名/字段值是否区分大小写
1.MySQL默认情况下是否区分大小写,使用show Variables like '%table_names'查看lower_case_table_names的值,0代表区分,1代表不区分. 2.m ...