【BZOJ 3527】 3527: [Zjoi2014]力 (FFT)
3527: [Zjoi2014]力
Time Limit: 30 Sec Memory Limit: 256 MBSec Special Judge
Submit: 2003 Solved: 1196Description
给出n个数qi,给出Fj的定义如下:令Ei=Fi/qi,求Ei.Input
第一行一个整数n。接下来n行每行输入一个数,第i行表示qi。n≤100000,0<qi<1000000000Output
n行,第i行输出Ei。与标准答案误差不超过1e-2即可。
Sample Input
5
4006373.885184
15375036.435759
1717456.469144
8514941.004912
1410681.345880Sample Output
-16838672.693
3439.793
7509018.566
4595686.886
10903040.872HINT
Source
【分析】
这题的卷积没那么好看出来吧?
Ei=Fi/qi
所以$Ej=\sum_{i<j} \dfrac{qi}{(j-i)^2}-\sum_{i>j} \dfrac{qi}{(j-i)^2}+0(i=j)$
容易看出,分子和分母的和是一样的(卷积)
但是当i>j时系数是减,且这个下标是负号,怎么办呢?
弄一个具体例子容易看出来:
说明是负数的时候$F[i]=-\dfrac{1}{i^2}$ 正数的时候$F[i]=\dfrac{1}{i^2}$$F[0]=0$
即$E[n]=\sum A[i]*F[n-i]$,但这里的n-i可以为负,i从1到max,而不是1到n。
所以把下标全部右移n位即可。
即
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
#define Maxn 100000*8
const double pi=acos(-); struct P
{
double x,y;
P() {x=y=;}
P(double x,double y):x(x),y(y){}
friend P operator + (P x,P y) {return P(x.x+y.x,x.y+y.y);}
friend P operator - (P x,P y) {return P(x.x-y.x,x.y-y.y);}
friend P operator * (P x,P y) {return P(x.x*y.x-x.y*y.y,x.x*y.y+x.y*y.x);}
}a[Maxn],b[Maxn]; void fft(P *s,int n,int t)
{
if(n==) return;
P a0[n>>],a1[n>>];
for(int i=;i<=n;i+=) a0[i>>]=s[i],a1[i>>]=s[i+];
fft(a0,n>>,t);fft(a1,n>>,t);
P wn(cos(*pi/n),t*sin(*pi/n)),w(,);
for(int i=;i<(n>>);i++,w=w*wn) s[i]=a0[i]+w*a1[i],s[i+(n>>)]=a0[i]-w*a1[i];
} int main()
{
int n,m;
scanf("%d",&n);n--;
m=*n;
for(int i=;i<=n;i++) scanf("%lf",&a[i].x);
for(int j=n;j>=;j--) b[n-j].x=-1.0/j/j;
b[n].x=;
for(int j=;j<=n;j++) b[n+j].x=1.0/j/j;
int nn=;
while(nn<n+m) nn<<=;
fft(a,nn,);fft(b,nn,);
for(int i=;i<=nn;i++) a[i]=a[i]*b[i];
fft(a,nn,-);
for(int i=n;i<=n+n;i++) printf("%.3lf\n",a[i].x/nn);
return ;
}
2017-04-13 14:26:20
【BZOJ 3527】 3527: [Zjoi2014]力 (FFT)的更多相关文章
- bzoj3527: [Zjoi2014]力 fft
bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...
- 【BZOJ】3527: [Zjoi2014]力 FFT
[参考]「ZJOI2014」力 - FFT by menci [算法]FFT处理卷积 [题解]将式子代入后,化为Ej=Aj-Bj. Aj=Σqi*[1/(i-j)^2],i=1~j-1. 令f(i)= ...
- P3338 [ZJOI2014]力(FFT)
题目 P3338 [ZJOI2014]力 做法 普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\) 其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略 ...
- bzoj 3527 [Zjoi2014]力——FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 把 q[ i ] 除掉.设 g[ i ] = i^2 ,有一半的式子就变成卷积了:另一 ...
- bzoj 3527 [Zjoi2014] 力 —— FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 看了看TJ才推出来式子,还是不够熟练啊: TJ:https://blog.csdn.n ...
- BZOJ 3527: [Zjoi2014]力(FFT)
我们看一下这个函数,很容易就把他化为 E=sigma(aj/(i-j)/(i-j))(i>j)-sigma(aj/(i-j)/(i-j))(j>i) 把它拆成两半,可以发现分子与分母下标相 ...
- BZOJ 3527 [Zjoi2014]力 ——FFT
[题目分析] FFT,构造数列进行卷积,挺裸的一道题目诶. 还是写起来并不顺手,再练. [代码] #include <cmath> #include <cstdio> #inc ...
- 【bzoj3527】[Zjoi2014]力 FFT
2016-06-01 21:36:44 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 我就是一个大傻叉 微笑脸 #include&l ...
- [BZOJ3527][ZJOI2014]力 FFT+数学
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 首先卷积的形式是$h(i)=\sum_{i=0}^jf(i)g(i-j)$,如果我们 ...
- [ZJOI2014]力 FFT
题面 题解: \[F_j = \sum_{i < j}\frac{q_iq_j}{(i - j)^2} - \sum_{i > j}{\frac{q_iq_j}{(i - j)^2}}\] ...
随机推荐
- JavaScript-变量与作用域链
jQuery片段: 1 var 2 // Will speed up references to window, and allows munging its name. 3 win ...
- Eclipse 断点调试
Eclipse 开发专用的Debug模式,用于发现问题解决问题. 1. 设置断点,程序会在改位置停止. 2. 按F5(step into), F6(step over)执行.F5指跳入,逐语句.会进入 ...
- 【LIbreOJ】#6256. 「CodePlus 2017 12 月赛」可做题1
[题意]定义一个n阶正方形矩阵为“巧妙的”当且仅当:任意选择其中n个不同行列的数字之和相同. 给定n*m的矩阵,T次询问以(x,y)为左上角的k阶矩阵是否巧妙.n,m<=500,T<=10 ...
- 爬虫实战--基于requests和beautifulsoup的妹子网图片爬取(福利哦!)
#coding=utf-8 import requests from bs4 import BeautifulSoup import os all_url = 'http://www.mzitu.co ...
- AngularJs 文件上传(实现Multipart/form-data 文件的上传)
<!-- 上传yml文件 --> <div class="blackBoard" ng-show="vm.showUpop==true"> ...
- css的背景图片background
1.使用背景图片的标签定设置宽高,没有设置的话,也需要用内容来撑开标签. 2.如果对同一个标签分开设置背景图片和颜色,背景颜色一定要写在背景图片后面,不然会被覆盖 <!DOCTYPE html& ...
- java在图片上写字
- ps的各种参数
1.CPU占用最多的前10个进程: ps auxw|head -1;ps auxw|sort -rn -k3|head -10 2.内存消耗最多的前10个进程 ps auxw|head -1;ps a ...
- Nginx1.8.1 编译扩展https
nginx无缝编译扩展https 本贴只限用于通过编译安装的nginx,如果用的是yum源安装请卸载后参见 http://www.cnblogs.com/rslai/p/7851220.html 安装 ...
- 让Linux应用更加得心应手的
1.计算文件数和目录数 下面的语句可以帮你计算有多少个文件和多少个目录 # ls -l * |grep "^-"|wc -l ---- to count files # ls - ...