Bi-shoe and Phi-shoe(欧拉筛)
Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe is a very popular coach for his success. He needs some bamboos for his students, so he asked his assistant Bi-Shoe to go to the market and buy them. Plenty of Bamboos of all possible integer lengths (yes!) are available in the market. According to Xzhila tradition,
Score of a bamboo = Φ (bamboo's length)
(Xzhilans are really fond of number theory). For your information, Φ (n) = numbers less than n which are relatively prime (having no common divisor other than 1) to n. So, score of a bamboo of length 9 is 6 as 1, 2, 4, 5, 7, 8 are relatively prime to 9.
The assistant Bi-shoe has to buy one bamboo for each student. As a twist, each pole-vault student of Phi-shoe has a lucky number. Bi-shoe wants to buy bamboos such that each of them gets a bamboo with a score greater than or equal to his/her lucky number. Bi-shoe wants to minimize the total amount of money spent for buying the bamboos. One unit of bamboo costs 1 Xukha. Help him.
Input
Input starts with an integer T (≤ 100), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n ≤ 10000) denoting the number of students of Phi-shoe. The next line contains n space separated integers denoting the lucky numbers for the students. Each lucky number will lie in the range [1, 106].
Output
For each case, print the case number and the minimum possible money spent for buying the bamboos. See the samples for details.
Sample Input
3
5
1 2 3 4 5
6
10 11 12 13 14 15
2
1 1
Sample Output
Case 1: 22 Xukha
Case 2: 88 Xukha
Case 3: 4 Xukha
代码:
欧拉筛
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<vector>
#include<cmath>
#include<stdlib.h>
const int maxn=1e6+5;
typedef long long ll;
using namespace std;
int prime[1000005];
bool vis[1000005];
void erla() {
int cnt =0;
memset(vis,false,sizeof(vis));
memset(prime,0,sizeof(prime));
for(int t=2; t<=1000005; t++) {
if(!vis[t]) {
prime[cnt++]=t;
}
for(int j=0; j<cnt&&t*prime[j]<=1000005; j++) {
vis[t*prime[j]]=true;
if(t%prime[j]==0) {
break;
}
}
}
}
int main()
{
int T;
cin>>T;
erla();
int n;
int cnt=1;
while(T--)
{
cin>>n;
ll sum=0;
int x;
int l,r;
for(int t=0;t<n;t++)
{
scanf("%d",&x);
for(int j=x+1;j<=1000003;j++)
{
if(vis[j]==false)
{
sum+=j;
break;
}
}
}
cout<<"Case "<<cnt<<": "<<sum<<" Xukha"<<endl;
cnt++;
}
return 0;
}
二分+欧拉函数
wa了,没找到错
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<vector>
#include<cmath>
const int maxn=1e6+5;
typedef long long ll;
using namespace std;
struct node
{
ll val,id;
}p[maxn];
int Eular(int n)
{
int ans = n;
for (int i = 2 ; i * i <= n ; i++)
{
if (n % i == 0)
{
ans -= ans / i;
while (n % i == 0)
n /= i;
}
}
if (n > 1)
ans -= ans / n;
return ans;
}
bool cmp(node x,node y)
{
if(x.val!=y.val)
{
return x.val<y.val;
}
else
{
return x.id<y.id;
}
}
int main()
{
int cc=0;
for(int t=2;t<=1000003;t++)
{
p[cc].val=Eular(t);
p[cc++].id=t;
}
sort(p,p+cc,cmp);
int T;
cin>>T;
int n;
int cnt=1;
while(T--)
{
cin>>n;
ll sum=0;
int x;
int l,r;
for(int t=0;t<n;t++)
{
scanf("%d",&x);
l=0;r=cc;
while(l<r)
{
int mid=(l+r)>>1;
if(p[mid].val<x)
{
l=mid+1;
}
else
{
r=mid;
}
}
sum+=p[(l+r)>>1].id;
}
cout<<"Case "<<cnt<<": "<<sum<<" Xukha"<<endl;
cnt++;
}
return 0;
}
Bi-shoe and Phi-shoe(欧拉筛)的更多相关文章
- 【BZOJ 2190】【SDOI 2008】仪仗队 欧拉筛
欧拉筛模板题 #include<cstdio> using namespace std; const int N=40003; int num=0,prime[N],phi[N]; boo ...
- 素数筛&&欧拉筛
折腾了一晚上很水的数论,整个人都萌萌哒 主要看了欧拉筛和素数筛的O(n)的算法 这个比那个一长串英文名的算法的优势在于没有多次计算一个数,也就是说一个数只筛了一次,主要是在%==0之后跳出实现的,具体 ...
- 欧拉筛,线性筛,洛谷P2158仪仗队
题目 首先我们先把题目分析一下. emmmm,这应该是一个找规律,应该可以打表,然后我们再分析一下图片,发现如果这个点可以被看到,那它的横坐标和纵坐标应该互质,而互质的条件就是它的横坐标和纵坐标的最大 ...
- UVA12995 Farey Sequence [欧拉函数,欧拉筛]
洛谷传送门 Farey Sequence (格式太难调,题面就不放了) 分析: 实际上求分数个数就是个幌子,观察可以得到,所求的就是$\sum^n_{i=2}\phi (i)$,所以直接欧拉筛+前缀和 ...
- [SDOI2008]仪仗队(欧拉筛裸题)
题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如右图 ...
- POJ3090 Visible Lattice Points 欧拉筛
题目大意:给出范围为(0, 0)到(n, n)的整点,你站在原点处,问有多少个整点可见. 线y=x和坐标轴上的点都被(1,0)(0,1)(1,1)挡住了.除这三个钉子外,如果一个点(x,y)不互质,则 ...
- noip复习——线性筛(欧拉筛)
整数的唯一分解定理: \(\forall A\in \mathbb {N} ,\,A>1\quad \exists \prod\limits _{i=1}^{s}p_{i}^{a_{i}}=A\ ...
- [51NOD1181]质数中的质数(质数筛法)(欧拉筛)
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1181 思路:欧拉筛出所有素数和一个数的判定,找到大于n的最小质 ...
- pku-2909 (欧拉筛)
题意:哥德巴赫猜想.问一个大于2的偶数能被几对素数对相加. 思路:欧拉筛,因为在n<215,在3万多,一个欧拉筛得时间差不多4*104, 那么筛出来的素数有4千多个,那么两两组合直接打表,时间复 ...
- hdu2973-YAPTCHA-(欧拉筛+威尔逊定理+前缀和)
YAPTCHA Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
随机推荐
- 运行jupyter
在mac 命令行中输入 jupyter notebook 即可 https://www.datacamp.com/community/tutorials/tutorial-jupyter-notebo ...
- maven添加阿里仓库
1.修改settings.xml 在maven的settings.xml 文件里配置mirrors的子节点,添加如下mirror <mirror> <id>nexus-aliy ...
- dapper利用DynamicParameters构建动态参数查询
public static int GetTotalLogin(string username,DateTime start, DateTime end) { using (var _connecti ...
- select右三角消除(转)
代码如下: select { /*Chrome和Firefox里面的边框是不一样的,所以复写了一下*/ border: solid 1px #; /*很关键:将默认的select选择框样式清除*/ a ...
- Actor模型文章收集
参与者模式——维基百科 Akka.Net——github开源项目 Actor原理——比较深入的文章
- 云存储上传控件更新日志-Xproer.cloud2
官方网站:http://www.ncmem.com/ 产品首页:http://www.ncmem.com/webapp/cloud2/index.asp 在线演示:http://www.ncmem.c ...
- linux 命令学习-网络相关配置
网络配置相关 网卡配置文件:etc/sysconfig/network-scripts/ifcfg-eth0 DNS 配置文件 etc/resolv.conf 主机配置文件 etc/sysconfig ...
- SOAP协议初级指南 (二)
XML 作为一个更好的网络数据表达方式(NDR) HTTP是一个相当有用的RPC协议,它提供了IIOP或DCOM在组帧.连接管理以及序列化对象应用等方面大部分功能的支持.( 而且URLs与IORs和O ...
- ListControl的用法
ListControl 控件可在窗体中管理和显示列 表项.可控制列表内容的显示方式,能够以图标和表格的形式显示数据.打开ListControl控件的属性窗口,在Styles选项卡中的View属性中 可 ...
- MongoDB整理笔记のjava MongoDB分页优化
最近项目在做网站用户数据新访客统计,数据存储在MongoDB中,统计的数据其实也并不是很大,1000W上下,但是公司只配给我4G内存的电脑,让我程序跑起来气喘吁吁...很是疲惫不堪. 最常见的问题莫过 ...