决策树C4.5算法——计算步骤示例
步骤:
1、通过信息增益率筛选分支。
(1)共有4个自变量,分别计算每一个自变量的信息增益率。
首先计算outlook的信息增益。outlook的信息增益Gain(outlook)=

其中,v是可能取值的集合(本例中,outlook可以取3个值),D表示整个数据集,Dv是outlook取值为v的样本集合,而|*|表示数据集的大小(其中的样本数量)。
其中Entropy(PlayGolf? in D)为最终因变量PlayGolf的信息熵值。计算过程为:
PlayGolf共有2种结果:YES(9个观测值)、NO(5个观测值)
YES出现的概率为9/14,NO出现的概率为5/14。
根据熵值计算公式:

其中c=2(PlayGolf有2个取值YES和NO)。
p1=9/14,p2=5/14.

其次计算根据outlook对数据进行分类,加权计算PlayGolf的信息熵

中D表示了1-14全部的PlayGolf数值,但是可以根据outlook的取值不同将1-14行数据,分为3类:Sunny、Overcast、Rainy。
D1表示了为Sunny的PlayGolf的数值。

计算D1的中playgolf的信息熵。同理计算D2,D3数据集的PlayGolf信息熵。


计算属性Outlook的信息增益Gain(Outlook)=0.940-0.694=0.246
信息增益率为:
Outlook的信息增益已经有了,现在计算Outlook的熵。

计算Outlook的信息增益率

同理计算其他属性的信息增益率。
决策树C4.5算法——计算步骤示例的更多相关文章
- 02-22 决策树C4.5算法
目录 决策树C4.5算法 一.决策树C4.5算法学习目标 二.决策树C4.5算法详解 2.1 连续特征值离散化 2.2 信息增益比 2.3 剪枝 2.4 特征值加权 三.决策树C4.5算法流程 3.1 ...
- 决策树-C4.5算法(三)
在上述两篇的文章中主要讲述了决策树的基础,但是在实际的应用中经常用到C4.5算法,C4.5算法是以ID3算法为基础,他在ID3算法上做了如下的改进: 1) 用信息增益率来选择属性,克服了用信息增益选择 ...
- Python实现决策树C4.5算法
为什么要改进成C4.5算法 原理 C4.5算法是在ID3算法上的一种改进,它与ID3算法最大的区别就是特征选择上有所不同,一个是基于信息增益比,一个是基于信息增益. 之所以这样做是因为信息增益倾向于选 ...
- 决策树 -- C4.5算法
C4.5是另一个分类决策树算法,是基于ID3算法的改进,改进点如下: 1.分离信息 解释:数据集通过条件属性A的分离信息,其实和ID3中的熵: 2.信息增益率 解释:Gain(A)为获的A ...
- python实现决策树C4.5算法(在ID3基础上改进)
一.概论 C4.5主要是在ID3的基础上改进,ID3选择(属性)树节点是选择信息增益值最大的属性作为节点.而C4.5引入了新概念"信息增益率",C4.5是选择信息增益率最大的属性作 ...
- 决策树之C4.5算法
决策树之C4.5算法 一.C4.5算法概述 C4.5算法是最常用的决策树算法,因为它继承了ID3算法的所有优点并对ID3算法进行了改进和补充. 改进有如下几个要点: 用信息增益率来选择属性,克服了ID ...
- 决策树(C4.5)原理
决策树c4.5算法是在决策树ID3上面演变而来. 在ID3中: 信息增益 按属性A划分数据集S的信息增益Gain(S,A)为样本集S的熵减去按属性A划分S后的样本子集的熵,即 在此基础上,C4.5计算 ...
- 决策树-预测隐形眼镜类型 (ID3算法,C4.5算法,CART算法,GINI指数,剪枝,随机森林)
1. 1.问题的引入 2.一个实例 3.基本概念 4.ID3 5.C4.5 6.CART 7.随机森林 2. 我们应该设计什么的算法,使得计算机对贷款申请人员的申请信息自动进行分类,以决定能否贷款? ...
- 机器学习之决策树(ID3 、C4.5算法)
声明:本篇博文是学习<机器学习实战>一书的方式路程,系原创,若转载请标明来源. 1 决策树的基础概念 决策树分为分类树和回归树两种,分类树对离散变量做决策树 ,回归树对连续变量做决策树.决 ...
随机推荐
- 【转】彻底理解ThreadLocal
ThreadLocal是什么 早在JDK 1.2的版本中就提供Java.lang.ThreadLocal,ThreadLocal为解决多线程程序的并发问题提供了一种新的思路.使用这个工具类可以很简洁地 ...
- 编写高质量代码改善C#程序的157个建议——建议155:随生产代码一起提交单元测试代码
建议155:随生产代码一起提交单元测试代码 首先提出一个问题:我们害怕修改代码吗?是否曾经无数次面对乱糟糟的代码,下决心进行重构,然后在一个月后的某个周一,却收到来自测试版的报告:新的版本,没有之前的 ...
- Java概述、环境变量、注释、关键字、标识符、常量
Java语言的特点 有很多小特点,重点有两个开源,跨平台 Java语言是跨平台的 Java语言的平台 JavaSE JavaME--Android ...
- Appium 简介及工作原理
申请:本文介绍主要是针对Android. 1.什么是Appium: Appium是一个开源.跨平台的测试框架,可以用来测试原生及混合的移动端应用.Appium支持IOS.Android及Firefox ...
- 微信小程序自定义事件
案例结构 首先,我还是会以案例的形式向大家讲解(这样也能方便大家更好的理解)简单介绍一下案例项目的内容(以上一章自定义组件的案例为基础)项目名称:component自定义子组件cpt父组件:logs ...
- spark介绍2
上述结果是 map 1 filter 1 map 2 filter 2 map 3 filter 3 map 4 filter 4 即说明是并行,且互不干扰,每个task运行到最后
- 所有中心对称五字母域名生成,扫了一下,com的基本上都被注册了。。。
public static void main(String[] args) { String[] letter = new String[]{"i","m", ...
- Windows 64位操作系统的ODBC
我的操作系统是windows server 2008 R2 X64,系统自带两个版本的ODBC管理器,在"运行"中输入下面内容分别调出他们: X64: C:\windows\sys ...
- coffee主题美化内容概要
1.具备自动生浮动标题目录(可隐藏) 2.页首目录概要 3.主标题有明显的标志背景颜色,二级标题缩进合适 4.一级.二级标题下图片缩进合适 5.博客签名 6.背景音乐列表 7.打赏 8.联系方式(QQ ...
- Mysql内置功能《二》触发器
使用触发器可以定制用户对表进行[增.删.改]操作时前后的行为,注意:没有查询 一 创建触发器 # 插入前 CREATE TRIGGER tri_before_insert_tb1 BEFORE INS ...