hdu 4940 Destroy Transportation system (无源汇上下界可行流)
Destroy Transportation system
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
http://acm.hdu.edu.cn/showproblem.php?pid=4940
transportation system.
Let’s represent his enemy’s transportation system
as a simple directed graph G with n nodes and m edges. Each node is a city and
each directed edge is a directed road. Each edge from node u to node v is
associated with two values D and B, D is the cost to destroy/remove such edge, B
is the cost to build an undirected edge between u and v.
His enemy can
deliver supplies from city u to city v if and only if there is a directed path
from u to v. At first they can deliver supplies from any city to any other
cities. So the graph is a strongly-connected graph.
He will choose a
non-empty proper subset of cities, let’s denote this set as S. Let’s denote the
complement set of S as T. He will command his soldiers to destroy all the edges
(u, v) that u belongs to set S and v belongs to set T.
To destroy an
edge, he must pay the related cost D. The total cost he will pay is X. You can
use this formula to calculate X:
After that, all the edges from S to
T are destroyed. In order to deliver huge number of supplies from S to T, his
enemy will change all the remained directed edges (u, v) that u belongs to set T
and v belongs to set S into undirected edges. (Surely, those edges exist because
the original graph is strongly-connected)
To change an edge, they must
remove the original directed edge at first, whose cost is D, then they have to
build a new undirected edge, whose cost is B. The total cost they will pay is Y.
You can use this formula to calculate Y:
At last, if Y>=X, Tom will
achieve his goal. But Tom is so lazy that he is unwilling to take a cup of time
to choose a set S to make Y>=X, he hope to choose set S randomly! So he asks
you if there is a set S, such that Y<X. If such set exists, he will feel
unhappy, because he must choose set S carefully, otherwise he will become very
happy.
The first line
contains an integer T(T<=200), indicates the number of cases.
For
each test case, the first line has two numbers n and m.
Next m lines
describe each edge. Each line has four numbers u, v, D, B.
(2=<n<=200,
2=<m<=5000, 1=<u, v<=n, 0=<D, B<=100000)
The meaning of
all characters are described above. It is guaranteed that the input graph is
strongly-connected.
number starting from 1.If such set doesn’t exist, print “happy”, else print
“unhappy”.
In first sample, for any set S, X=2, Y=4. In second sample. S= {1}, T= {2, 3}, X=10, Y=4.
题意:给出一个有向强连通图,每条边有两个值:破坏该边的代价a 和 把该边建成无向边的代价b
问是否存在一个集合S和S的补集T,满足 S到T的割边的 a的总和 > T到S的 割边的 a+b的总和
若存在 输出unhappy, 不存在,输出happy 以a为下界,a+b为上界,判断是否存在无源汇上下界可行流
因为如果存在,流量总和>=下界,<=上界
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#define N 210
#define M 15000
using namespace std;
int m,n,src,dec,sum,tot;
int a[N];
int front[N],to[M],nextt[M],cap[M];
int lev[N],cur[N];
queue<int>q;
void add(int u,int v,int w)
{
to[++tot]=v; nextt[tot]=front[u]; front[u]=tot; cap[tot]=w;
to[++tot]=u; nextt[tot]=front[v]; front[v]=tot; cap[tot]=;
}
bool bfs()
{
for(int i=src;i<=dec;i++) cur[i]=front[i],lev[i]=-;
while(!q.empty()) q.pop();
lev[src]=;
q.push(src);
int now;
while(!q.empty())
{
now=q.front(); q.pop();
for(int i=front[now];i;i=nextt[i])
if(cap[i]>&&lev[to[i]]==-)
{
lev[to[i]]=lev[now]+;
if(to[i]==dec) return true;
q.push(to[i]);
}
}
return false;
}
int dfs(int now,int flow)
{
if(now==dec) return flow;
int rest=,delta;
for(int & i=cur[now];i;i=nextt[i])
if(cap[i]>&&lev[to[i]]>lev[now])
{
delta=dfs(to[i],min(flow-rest,cap[i]));
if(delta)
{
cap[i]-=delta; cap[i^]+=delta;
rest+=delta; if(rest==flow) break;
}
}
if(rest!=flow) lev[now]=-;
return rest;
}
int dinic()
{
int tmp=;
while(bfs()) tmp+=dfs(src,2e9);
return tmp;
}
int main()
{
int T;
scanf("%d",&T);
for(int k=;k<=T;k++)
{
memset(a,,sizeof(a));
memset(front,,sizeof(front));
sum=; tot=;
scanf("%d%d",&n,&m);
src=; dec=n+;
int u,v,c,d;
for(int i=;i<=m;i++)
{
scanf("%d%d%d%d",&u,&v,&c,&d);
a[v]+=c; a[u]-=c;
add(u,v,d);
}
for(int i=;i<=n;i++)
if(a[i]<) add(i,dec,-a[i]);
else if(a[i]>) {add(src,i,a[i]); sum+=a[i];}
if(dinic()==sum) printf("Case #%d: happy\n",k);
else printf("Case #%d: unhappy\n",k);
}
}
hdu 4940 Destroy Transportation system (无源汇上下界可行流)的更多相关文章
- HDU 4940 Destroy Transportation system(无源汇上下界网络流)
Problem Description Tom is a commander, his task is destroying his enemy’s transportation system. Le ...
- hdu 4940 Destroy Transportation system( 无源汇上下界网络流的可行流推断 )
题意:有n个点和m条有向边构成的网络.每条边有两个花费: d:毁坏这条边的花费 b:重建一条双向边的花费 寻找这样两个点集,使得点集s到点集t满足 毁坏全部S到T的路径的费用和 > 毁坏全部T到 ...
- ZOJ 2314 - Reactor Cooling - [无源汇上下界可行流]
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2314 The terrorist group leaded by ...
- zoj 2314 Reactor Cooling (无源汇上下界可行流)
Reactor Coolinghttp://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 Time Limit: 5 Seconds ...
- ZOJ2314 Reactor Cooling(无源汇上下界可行流)
The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear ...
- zoj2314 无源汇上下界可行流
题意:看是否有无源汇上下界可行流,如果有输出流量 题解:对于每一条边u->v,上界high,下界low,来说,我们可以建立每条边流量为high-low,那么这样得到的流量可能会不守恒(流入量!= ...
- 有源汇上下界可行流(POJ2396)
题意:给出一个n*m的矩阵的每行和及每列和,还有一些格子的限制,求一组合法方案. 源点向行,汇点向列,连一条上下界均为和的边. 对于某格的限制,从它所在行向所在列连其上下界的边. 求有源汇上下界可行流 ...
- 计蒜客 31447 - Fantastic Graph - [有源汇上下界可行流][2018ICPC沈阳网络预赛F题]
题目链接:https://nanti.jisuanke.com/t/31447 "Oh, There is a bipartite graph.""Make it Fan ...
- poj2396有源汇上下界可行流
题意:给一些约束条件,要求算能否有可行流,ps:刚开始输入的是每一列和,那么就建一条上下界相同的边,这样满流的时候就一定能保证流量相同了,还有0是该列(行)对另一行每个点都要满足约束条件 解法:先按无 ...
随机推荐
- Java变量声明,实例化,问题
1.变量在输出前必须实例化,这是因为只有声明,没有分配内存空间 在这种情况下会报错 2.实例化后,尽管没有赋值,可能是默认了吧,但也不会输出null,什么也没有输出 上面的理解可能是错的,a赋值了,就 ...
- pat甲级1002
1002. A+B for Polynomials (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue T ...
- Python:生成器的简单理解
一.什么是生成器 在Python中,由于受到内存的限制,列表容量肯定是有限的.例如我们创建一个包含一亿个元素的列表,Python首先会在内存中开辟足够的空间来存储这个包含一亿个元素的列表,然后才允许用 ...
- mosquitto启动时Address already in use 和 一般的 Address already in use
对于mosquitto启动时的地址占用错误,可能是mosquitto启动之后没关掉,进程一直占用了端口.查看mosquitto相关的进程,然后关掉就可启动了. 关掉mosquitto进程即可 参考: ...
- 上传web端——个人项目
我用visual studio新建了一个web窗口,如图: 然后这里是系统自带的代码: [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile ...
- oracle 行转列和列转行
WITH L AS ( ), m AS ( SELECT A.LV AS LV_A, B.LV AS LV_B, TO_CHAR(B.LV) || 'x' || TO_CHAR(A.LV) || '= ...
- LR之Java Vuser II
最近项目待压测的服务端协议使用的是java的Netty框架开发,而传输的业务数据使用了google protobuf进行序列化,然后通过tcp数据流与客户端通讯.这一次的压测脚本决定使用LR的java ...
- 把握曝光三要素(上):快门、光圈、ISO
概要: 如果你还没有掌握快门.光圈和ISO,那这篇文章或许对你有所帮助! 把照片比作水池.把进光量比作水.把快门比作关闭水龙头的速度.把光圈比作水龙头的大小.把感光度ISO比作水龙头的滤网,这就变得好 ...
- 第210天:node、nvm、npm和gulp的安装和使用详解
一.node 1.什么是node? 它不是JS文件,也不是JS框架,而是Server side JavaScript runtime,当服务端的一个JS文件运行时,会被NODE拦截,在NODE中运行J ...
- 动态Lambda表达式打印HelloWorld
最近在用C#与数据库打交道.开发过程中采用了ORM模型(以前是纯sql玩法,复杂的逻辑用存储过程做). 为了能通过配置文件动态地查询字段,也就是说需要能这样写: db.AsQuery<T> ...