Destroy Transportation system

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
http://acm.hdu.edu.cn/showproblem.php?pid=4940

Problem Description
Tom is a commander, his task is destroying his enemy’s
transportation system.

Let’s represent his enemy’s transportation system
as a simple directed graph G with n nodes and m edges. Each node is a city and
each directed edge is a directed road. Each edge from node u to node v is
associated with two values D and B, D is the cost to destroy/remove such edge, B
is the cost to build an undirected edge between u and v.

His enemy can
deliver supplies from city u to city v if and only if there is a directed path
from u to v. At first they can deliver supplies from any city to any other
cities. So the graph is a strongly-connected graph.

He will choose a
non-empty proper subset of cities, let’s denote this set as S. Let’s denote the
complement set of S as T. He will command his soldiers to destroy all the edges
(u, v) that u belongs to set S and v belongs to set T.

To destroy an
edge, he must pay the related cost D. The total cost he will pay is X. You can
use this formula to calculate X:

After that, all the edges from S to
T are destroyed. In order to deliver huge number of supplies from S to T, his
enemy will change all the remained directed edges (u, v) that u belongs to set T
and v belongs to set S into undirected edges. (Surely, those edges exist because
the original graph is strongly-connected)

To change an edge, they must
remove the original directed edge at first, whose cost is D, then they have to
build a new undirected edge, whose cost is B. The total cost they will pay is Y.
You can use this formula to calculate Y:

At last, if Y>=X, Tom will
achieve his goal. But Tom is so lazy that he is unwilling to take a cup of time
to choose a set S to make Y>=X, he hope to choose set S randomly! So he asks
you if there is a set S, such that Y<X. If such set exists, he will feel
unhappy, because he must choose set S carefully, otherwise he will become very
happy.

 
Input
There are multiply test cases.

The first line
contains an integer T(T<=200), indicates the number of cases.

For
each test case, the first line has two numbers n and m.

Next m lines
describe each edge. Each line has four numbers u, v, D, B.
(2=<n<=200,
2=<m<=5000, 1=<u, v<=n, 0=<D, B<=100000)

The meaning of
all characters are described above. It is guaranteed that the input graph is
strongly-connected.

 
Output
For each case, output "Case #X: " first, X is the case
number starting from 1.If such set doesn’t exist, print “happy”, else print
“unhappy”.
 
Sample Input
2
3 3
1 2 2 2
2 3 2 2
3 1 2 2
3 3
1 2 10 2
2 3 2 2
3 1 2 2
 
Sample Output
Case #1: happy
Case #2: unhappy
 
Hint

In first sample, for any set S, X=2, Y=4. In second sample. S= {1}, T= {2, 3}, X=10, Y=4.

 
题意:给出一个有向强连通图,每条边有两个值:破坏该边的代价a 和 把该边建成无向边的代价b
问是否存在一个集合S和S的补集T,满足 S到T的割边的 a的总和 > T到S的 割边的 a+b的总和
若存在 输出unhappy, 不存在,输出happy 以a为下界,a+b为上界,判断是否存在无源汇上下界可行流
因为如果存在,流量总和>=下界,<=上界
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#define N 210
#define M 15000
using namespace std;
int m,n,src,dec,sum,tot;
int a[N];
int front[N],to[M],nextt[M],cap[M];
int lev[N],cur[N];
queue<int>q;
void add(int u,int v,int w)
{
to[++tot]=v; nextt[tot]=front[u]; front[u]=tot; cap[tot]=w;
to[++tot]=u; nextt[tot]=front[v]; front[v]=tot; cap[tot]=;
}
bool bfs()
{
for(int i=src;i<=dec;i++) cur[i]=front[i],lev[i]=-;
while(!q.empty()) q.pop();
lev[src]=;
q.push(src);
int now;
while(!q.empty())
{
now=q.front(); q.pop();
for(int i=front[now];i;i=nextt[i])
if(cap[i]>&&lev[to[i]]==-)
{
lev[to[i]]=lev[now]+;
if(to[i]==dec) return true;
q.push(to[i]);
}
}
return false;
}
int dfs(int now,int flow)
{
if(now==dec) return flow;
int rest=,delta;
for(int & i=cur[now];i;i=nextt[i])
if(cap[i]>&&lev[to[i]]>lev[now])
{
delta=dfs(to[i],min(flow-rest,cap[i]));
if(delta)
{
cap[i]-=delta; cap[i^]+=delta;
rest+=delta; if(rest==flow) break;
}
}
if(rest!=flow) lev[now]=-;
return rest;
}
int dinic()
{
int tmp=;
while(bfs()) tmp+=dfs(src,2e9);
return tmp;
}
int main()
{
int T;
scanf("%d",&T);
for(int k=;k<=T;k++)
{
memset(a,,sizeof(a));
memset(front,,sizeof(front));
sum=; tot=;
scanf("%d%d",&n,&m);
src=; dec=n+;
int u,v,c,d;
for(int i=;i<=m;i++)
{
scanf("%d%d%d%d",&u,&v,&c,&d);
a[v]+=c; a[u]-=c;
add(u,v,d);
}
for(int i=;i<=n;i++)
if(a[i]<) add(i,dec,-a[i]);
else if(a[i]>) {add(src,i,a[i]); sum+=a[i];}
if(dinic()==sum) printf("Case #%d: happy\n",k);
else printf("Case #%d: unhappy\n",k);
}
}
 

hdu 4940 Destroy Transportation system (无源汇上下界可行流)的更多相关文章

  1. HDU 4940 Destroy Transportation system(无源汇上下界网络流)

    Problem Description Tom is a commander, his task is destroying his enemy’s transportation system. Le ...

  2. hdu 4940 Destroy Transportation system( 无源汇上下界网络流的可行流推断 )

    题意:有n个点和m条有向边构成的网络.每条边有两个花费: d:毁坏这条边的花费 b:重建一条双向边的花费 寻找这样两个点集,使得点集s到点集t满足 毁坏全部S到T的路径的费用和 > 毁坏全部T到 ...

  3. ZOJ 2314 - Reactor Cooling - [无源汇上下界可行流]

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2314 The terrorist group leaded by ...

  4. zoj 2314 Reactor Cooling (无源汇上下界可行流)

    Reactor Coolinghttp://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 Time Limit: 5 Seconds ...

  5. ZOJ2314 Reactor Cooling(无源汇上下界可行流)

    The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear ...

  6. zoj2314 无源汇上下界可行流

    题意:看是否有无源汇上下界可行流,如果有输出流量 题解:对于每一条边u->v,上界high,下界low,来说,我们可以建立每条边流量为high-low,那么这样得到的流量可能会不守恒(流入量!= ...

  7. 有源汇上下界可行流(POJ2396)

    题意:给出一个n*m的矩阵的每行和及每列和,还有一些格子的限制,求一组合法方案. 源点向行,汇点向列,连一条上下界均为和的边. 对于某格的限制,从它所在行向所在列连其上下界的边. 求有源汇上下界可行流 ...

  8. 计蒜客 31447 - Fantastic Graph - [有源汇上下界可行流][2018ICPC沈阳网络预赛F题]

    题目链接:https://nanti.jisuanke.com/t/31447 "Oh, There is a bipartite graph.""Make it Fan ...

  9. poj2396有源汇上下界可行流

    题意:给一些约束条件,要求算能否有可行流,ps:刚开始输入的是每一列和,那么就建一条上下界相同的边,这样满流的时候就一定能保证流量相同了,还有0是该列(行)对另一行每个点都要满足约束条件 解法:先按无 ...

随机推荐

  1. 寒假学习计划(C++)

    课程 1,计算机程序设计(C++)-西安交通大学(中国大学mooc)课程链接 2,面向对象程序设计-C++-浙大-翁恺(网易云课堂)课程链接 理由 1西安交大的C++慕课从零基础教起,更注重基础,重点 ...

  2. Alpha冲刺——第九天

    Alpha第九天 听说 031502543 周龙荣(队长) 031502615 李家鹏 031502632 伍晨薇 031502637 张柽 031502639 郑秦 1.前言 任务分配是VV.ZQ. ...

  3. 《我是一只IT小小鸟》心得

    虽然读这本书是老师布置的作业,但是读了几页后就被书中的内容所吸引住了.或许是因为我也是学这个专业的,所以书中的一些内容让我觉得非常的有兴趣.作为一个学习软件工程的大一学生还没真正的认识到这个专业的深奥 ...

  4. 读着读着《构建之法》(Build To Win) 越精神的白雪儿的思考

    哲学家的宗旨是:我思,故我在 科学家的宗旨是:我发现,故我在 工程师的宗旨是:我构建,故我在 ——<工程学--无尽的前沿> 序言:珍惜角色“人”,注重实践“物” <构建之法>, ...

  5. 2nd 词频统计效能测试

    词频统计效能测试 使用性能分析工具分析结果如下 :

  6. PHP中类型约束

    类型约束 什么叫类型约束? 就是要求某个变量只能使用(接收,存储)某种指定的数据类型: php属于“弱类型语言”,通常不支持类型约束: 相应的,强类型语言,类型约束却是其“基本特征”. php中,只支 ...

  7. 【操作系统、UNIX环境编程】进程间通信

    多个进程可以共享系统中的各种资源,但其中许多资源一次只能为一个进程使用,我们把一次仅允许一个进程使用的资源称为临界资源,许多物理设备都属于临界资源,如打印机等. Linux下进程间通信有如下几种方式: ...

  8. IE8 没有内容的盒子,如果有定位,浮现在其他盒子上 可能会有点击穿透没有作用的情况

    IE8 没有内容的盒子,如果有定位,浮现在其他盒子上 可能会有点击穿透没有作用的情况

  9. 【bzoj4428】[Nwerc2015]Debugging调试 数论+记忆化搜索

    题目描述 一个 $n$ 行的代码出了bug,每行都可能会产生这个bug.你要通过输出调试,在其中加入printf来判断bug出现的位置.运行一次程序的时间为 $r$ ,加入一条printf的时间为 $ ...

  10. 转---Android Audio System 之一:AudioTrack如何与AudioFlinger交换音频数据

    引子 Android Framework的音频子系统中,每一个音频流对应着一个AudioTrack类的一个实例,每个AudioTrack会在创建时注册到 AudioFlinger中,由AudioFli ...