Python高级编程之生成器(Generator)与coroutine(一):Generator
转载请注明出处:点我
这是一系列的文章,会从基础开始一步步的介绍Python中的Generator以及coroutine(协程)(主要是介绍coroutine),并且详细的讲述了Python中coroutine的各种高级用法,最后会用coroutine实现一个简单的多任务的操作系统。
其实也是看完这篇文章的学习笔记吧!O(∩_∩)O
生成器(Generator)
什么是生成器?在Python中,生成器(Generator)是一个带有yield关键字的函数
def gene():
a = 1
print "开始执行gene(),a = ",a
a += 1
yield "rio_2607"
print "回到gene(),再辞开始执行,a = ",a
a += 2
yield "uestc"
print "又回到了gene(),a = ",a
yield "emc"
gene()就是一个生成器,因为函数的定义中有yield关键字。那么生成器跟普通的函数有什么区别呢?
当调用gene()函数的时候,不会立即执行gene()函数中的代码,而是返回一个生成器对象(generator object):
>>> def gene():
a = 1
print "开始执行gene(),a = ",a
a += 1
yield "rio_2607"
print "回到gene(),再辞开始执行,a = ",a
a += 2
yield "uestc"
print "又回到了gene(),a = ",a
yield "emc" >>> g = gene()
>>> type(g)
<type 'generator'>
可以看到,g是一个generator类型的对象。那么什么时候会执行函数的代码呢?答:当调用生成器对象的next()函数时就会开始执行函数定义中的代码。
但是跟普通函数一旦开始执行就会一直执行直到结束不同,生成器函数会一直往下执行,但是一旦碰到yield关键字,就会返回yield关键字后面的数据,把函数当前的所有状态封存起来,然后暂停函数的执行,在生成器对象的next()函数再一次被调用的时候,会接着上一次暂停的地方继续往下执行,直到碰到了下一个yield关键字或者函数的代码执行完毕
>>> g = gene()
>>> type(g)
<type 'generator'>
>>> g.next()
开始执行gene(),a = 1
'rio_2607'
>>> g.next()
回到gene(),再辞开始执行,a = 2
'uestc'
>>> g.next()
又回到了gene(),a = 4
'emc'
可以看到,第一次调用g.next()函数时,函数内部的代码才开始执行,当执行到yield "rio_2607"这一句代码时,会返回"rio_2607",然后函数暂停执行。然后当再次调用next函数的时候,gene()函数会接着往下面执行,可以看到,这时打印出来的a=2,保持了函数上一次离开时候的数据,当碰到yield "uestc"这一句时,函数会再次停止执行,封存此时函数内的数据。当再一次调用next()函数的时候,gene()会接着上次的状态,在上次暂停的地方继续往下执行,可以看到,此时打印输出了a=4,碰到yield之后再次暂停执行。
当生成器执行完毕后,再一次调用next()时,函数会抛出StopIteration异常
>>> g.next()
又回到了gene(),a = 4
'emc'
>>> g.next() Traceback (most recent call last):
File "<pyshell#13>", line 1, in <module>
g.next()
StopIteration
生成器表达式(Generator Expresisions)
生成器表达式(Generator Expresisions)类似于列表推导式(list comprehension)
ge = (x * 2 for x in a)
其中(x * 2 for x in a)就是生成器表达式,这个表达式会返回一个生成器对象:
>>> ge = (x * 2 for x in a)
>>> ge
<generator object <genexpr> at 0x01EA0A30>
在for循环中,for循环会自动调用生成器对象的next()函数并处理StopIteration异常:
>>> ge
<generator object <genexpr> at 0x01EA0A30>
>>> for i in ge:
print i 2
4
6
8
说了那么多,那么生成器除了实现迭代器(Iteration)之外,还有有什么作用呢?
我们有这么一个web server上面的log文件,数据大概是这样的
77.81.4.30 - - [24/Feb/2008:02:17:53 -0600] "GET /favicon.ico HTTP/1.1" 404 133
24.1.247.118 - - [24/Feb/2008:02:20:25 -0600] "GET /dynamic/ HTTP/1.1" 200 5105
24.1.247.118 - - [24/Feb/2008:02:20:26 -0600] "GET /favicon.ico HTTP/1.1" 404 133
24.1.247.118 - - [24/Feb/2008:02:20:26 -0600] "GET /favicon.ico HTTP/1.1" 404 133
122.117.168.219 - - [24/Feb/2008:02:22:06 -0600] "GET /ply/ HTTP/1.1" 304 -
122.117.168.219 - - [24/Feb/2008:02:22:06 -0600] "GET /ply/bookplug.gif HTTP/1.1" 304 -
122.117.168.219 - - [24/Feb/2008:02:22:08 -0600] "GET /ply/example.html HTTP/1.1" 304 -
89.182.136.236 - - [24/Feb/2008:02:23:04 -0600] "GET /ply/ HTTP/1.1" 200 8018
89.182.136.236 - - [24/Feb/2008:02:23:05 -0600] "GET /ply/bookplug.gif HTTP/1.1" 200 23903
89.182.136.236 - - [24/Feb/2008:02:23:05 -0600] "GET /favicon.ico HTTP/1.1" 404 133
66.249.65.37 - - [24/Feb/2008:02:23:29 -0600] "GET /papers/SIAM97/SIAM97.pdf HTTP/1.1" 200 188949
117.198.144.124 - - [24/Feb/2008:02:23:50 -0600] "GET /ply/ply.html HTTP/1.1" 200 97238
117.198.144.124 - - [24/Feb/2008:02:23:53 -0600] "GET /favicon.ico HTTP/1.1" 404 133
每一行的最后一列要么表示一个字节数据,要么为-,表示字节数据未知
现在我们要统计文件中记录的所有的字节数据大小
python中常规的写法是这样的,在一个for循环中,每次处理一行数据:
def non_generator_func():
'''
分析web server的log文件来判断所有传输的字节数
Non-Generator的写法:用一个for循环
:return:
'''
wwwlog = open("access-log")
total = 0 for line in wwwlog:
# 获取字节数的字符串表示
bytestr = line.rsplit(None, 1)[1]
if bytestr != "-":
total += int(bytestr) print "Total", total
现在来看看使用Generator的风格编写的代码:
def generator_func():
wwwlog = open("access-log")
# 采用生成器表达式(Generator expression),返回一个Generator对象
bytecolumn = (line.rsplit(None, 1)[1] for line in wwwlog)
bytes = (int(x) for x in bytecolumn if x != "-") # 最后一步才进行计算
print "Total", sum(bytes)
可以看出,使用Generator,可以编写更少的代码,还会有跟普通的Python编程完全不一样的编程风格。
上面的generator_func()函数的工作方式类似于管道(pipeline):
access-log ---> wwwlog ---> bytecollumn --->bytes --->sum() --->total
现在来看另外一个Generator Fucntion的典型用法:在这里,我们模拟实现Unix中的"tail -f"命令。照例先看代码:
# tail -f:可以实时的得到新追加到文件中的信息,常用来跟踪日志文件
def unix_tail_f(thefile):
'''
Python版本的 Unix 'tail -f'
'''
import time
# 跳到文件末尾
thefile.seek(0,2)
while True:
line = thefile.readline()
if not line:
time.sleep(0.1)
continue
yield line
通过下面的方式来使用unix_tail_f()函数:
logfile = open("access-log")
for line in follow(logfile):
print line,
可以看出,通常使用Generator Fucntion的模式应该为:
现在,我们已经实现了tail -f的效果,接下来我们要更进一步,实现tail -f | grep 的过滤效果。先编写一个Generator Function,名字叫做grep,代码如下:
def grep(pattern,lines):
for line in lines:
if pattern in line:
# 如果line中有pattern,则返回这个line并挂起,暂停执行
yield line
下面的代码能够达到unix中的tail -f | grep pattern的效果:
def tail_f_grep(file,pattern):
'''
模拟tail -f | grep pattern
'''
logfile = open(file)
loglines = unix_tail_f(logfile)
pylines = grep(pattern,loglines) # 在for循环中处理结果
for line in pylines:
print line,
当调用tail_f_grep("access-log","python")可以达到tail -f | grep python的效果。
关于Python中的生成器,Python函数式编程指南(四):生成器这篇博客讲的挺好的,大家可以看下这篇博客。
Python高级编程之生成器(Generator)与coroutine(一):Generator的更多相关文章
- Python高级编程之生成器(Generator)与coroutine(二):coroutine介绍
原创作品,转载请注明出处:点我 上一篇文章Python高级编程之生成器(Generator)与coroutine(一):Generator中,我们介绍了什么是Generator,以及写了几个使用Gen ...
- Python高级编程之生成器(Generator)与coroutine(四):一个简单的多任务系统
啊,终于要把这一个系列写完整了,好高兴啊 在前面的三篇文章中介绍了Python的Python的Generator和coroutine(协程)相关的编程技术,接下来这篇文章会用Python的corout ...
- Python高级编程之生成器(Generator)与coroutine(三):coroutine与pipeline(管道)和Dataflow(数据流_
原创作品,转载请注明出处:点我 在前两篇文章中,我们介绍了什么是Generator和coroutine,在这一篇文章中,我们会介绍coroutine在模拟pipeline(管道 )和控制Dataflo ...
- python高级编程技巧
由python高级编程处学习 http://blog.sina.com.cn/s/blog_a89e19440101fb28.html Python列表解析语法[]和生成 器()语法类似 [expr ...
- 第十一章:Python高级编程-协程和异步IO
第十一章:Python高级编程-协程和异步IO Python3高级核心技术97讲 笔记 目录 第十一章:Python高级编程-协程和异步IO 11.1 并发.并行.同步.异步.阻塞.非阻塞 11.2 ...
- python高级编程之选择好名称:完
由于时间关系,python高级编程不在放在这边进行学习了,如果需要的朋友可以看下面的网盘进行下载 # # -*- coding: utf-8 -*- # # python:2.x # __author ...
- python高级编程之列表推导式
1. 一个简单的例子 在Python中,如果我们想修改列表中所有元素的值,可以使用 for 循环语句来实现. 例如,将一个列表中的每个元素都替换为它的平方: >>> L = [1, ...
- python高级编程:有用的设计模式3
# -*- coding: utf-8 -*-__author__ = 'Administrator'#python高级编程:有用的设计模式#访问者:有助于将算法从数据结构中分离出来"&qu ...
- python高级编程:有用的设计模式2
# -*- coding: utf-8 -*- __author__ = 'Administrator' #python高级编程:有用的设计模式 #代理 """ 代理对一 ...
随机推荐
- Microsoft Bot Builder Overview
微软机器人构建器概述 微软机器人Builder是一个强大的框架构建机器人可以处理自由交互和更多的引导,这种可能性是显式地显示给用户. 它很容易使用和利用c#写机器人提供一个自然的方式. 高级功能: 强 ...
- (LeetCode 72)Edit Distance
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
- IOS-UITableView入门(3)
UITableView本身自带了(增.删)编辑功能: 1.仅仅要调用UITableView的编辑代码 就会进入编辑状态: [self.tableView setEditing:!self.tableV ...
- python中各类时间的计算
python获取当前系统时间: nowTime=time.localtime() 获取当前系统日期: nowDate=datetime.datetime(nowTime[0],nowTime[1],n ...
- Ext.encode 与 Ext.decode .
Ext.encode( Mixed o ) : String: json对象转换json字符串 Ext.decode( String json ) : Object: json字符串转换json对象 ...
- 搭建ssm+maven环境遇到的问题
1. @RunWith(SpringJUnit4ClassRunner.class) gives error 在使用junit测试过程中 2.com.google.gson.JsonIOExcepti ...
- 使用 Tmux 强化终端功能
来自 tmux是一个优秀的终端复用软件,类似GNU Screen,但来自于OpenBSD,采用BSD授权.使用它最直观的好处就是通过一个终端登录远程主机并运行tmux后,在其中可以开启多个控制台而无需 ...
- 17、Cocos2dx 3.0游戏开发找小三之内置的经常使用层:三剑客LayerColor、LayerGradient、Menu
重开发人员的劳动成果,转载的时候请务必注明出处:http://blog.csdn.net/haomengzhu/article/details/30477587 为了方便游戏开发人员.Cocos2d- ...
- 【laravel54】创建控制器、模型
1.创建控制器(可以带上下一级目录)=>(需要带Controller后缀) > php artisan make:controller self/StudentController; 2. ...
- 在 Ubuntu12.04/Xubuntu12.04 上安装 QQ2012,这才是真正可行的
2012-5-18 11:16:29 1. 安装wine 终端下输入: sudo apt-get install wine 复制代码 有人这样:sudo apt-get install wine ...