生活中很多场合需要用到分类,比如新闻分类、病人分类等等。

  本文介绍朴素贝叶斯分类器(Naive Bayes classifier),它是一种简单有效的常用分类算法。

一、病人分类的例子

  让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难。

  某个医院早上收了六个门诊病人,如下表。

  症状  职业   疾病

  打喷嚏 护士   感冒 
  打喷嚏 农夫   过敏 
  头痛  建筑工人 脑震荡 
  头痛  建筑工人 感冒 
  打喷嚏 教师   感冒 
  头痛  教师   脑震荡

  现在又来了第七个病人,是一个打喷嚏的建筑工人。请问他患上感冒的概率有多大?

  根据贝叶斯定理

 P(A|B) = P(B|A) P(A) / P(B)

  可得

   P(感冒|打喷嚏x建筑工人) 
    = P(打喷嚏x建筑工人|感冒) x P(感冒) 
    / P(打喷嚏x建筑工人)

  假定"打喷嚏"和"建筑工人"这两个特征是独立的,因此,上面的等式就变成了

   P(感冒|打喷嚏x建筑工人) 
    = P(打喷嚏|感冒) x P(建筑工人|感冒) x P(感冒) 
    / P(打喷嚏) x P(建筑工人)

  这是可以计算的。

  P(感冒|打喷嚏x建筑工人) 
    = 0.66 x 0.33 x 0.5 / 0.5 x 0.33 
    = 0.66

  因此,这个打喷嚏的建筑工人,有66%的概率是得了感冒。同理,可以计算这个病人患上过敏或脑震荡的概率。比较这几个概率,就可以知道他最可能得什么病。

  这就是贝叶斯分类器的基本方法:在统计资料的基础上,依据某些特征,计算各个类别的概率,从而实现分类。

二、朴素贝叶斯分类器的公式

  假设某个体有n项特征(Feature),分别为F1、F2、...、Fn。现有m个类别(Category),分别为C1、C2、...、Cm。贝叶斯分类器就是计算出概率最大的那个分类,也就是求下面这个算式的最大值:

 P(C|F1F2...Fn) 
  = P(F1F2...Fn|C)P(C) / P(F1F2...Fn)

  由于 P(F1F2...Fn) 对于所有的类别都是相同的,可以省略,问题就变成了求

 P(F1F2...Fn|C)P(C)

  的最大值。

  朴素贝叶斯分类器则是更进一步,假设所有特征都彼此独立,因此

 P(F1F2...Fn|C)P(C) 
  = P(F1|C)P(F2|C) ... P(Fn|C)P(C)

  上式等号右边的每一项,都可以从统计资料中得到,由此就可以计算出每个类别对应的概率,从而找出最大概率的那个类。

  虽然"所有特征彼此独立"这个假设,在现实中不太可能成立,但是它可以大大简化计算,而且有研究表明对分类结果的准确性影响不大。

  下面再通过两个例子,来看如何使用朴素贝叶斯分类器。

三、账号分类的例子

  本例摘自张洋的《算法杂货铺----分类算法之朴素贝叶斯分类》

  根据某社区网站的抽样统计,该站10000个账号中有89%为真实账号(设为C0),11%为虚假账号(设为C1)。

  C0 = 0.89

  C1 = 0.11

  接下来,就要用统计资料判断一个账号的真实性。假定某一个账号有以下三个特征:

    F1: 日志数量/注册天数 
    F2: 好友数量/注册天数 
    F3: 是否使用真实头像(真实头像为1,非真实头像为0)

    F1 = 0.1 
    F2 = 0.2 
    F3 = 0

  请问该账号是真实账号还是虚假账号?

  方法是使用朴素贝叶斯分类器,计算下面这个计算式的值。

    P(F1|C)P(F2|C)P(F3|C)P(C)

  虽然上面这些值可以从统计资料得到,但是这里有一个问题:F1和F2是连续变量,不适宜按照某个特定值计算概率。

  一个技巧是将连续值变为离散值,计算区间的概率。比如将F1分解成[0, 0.05]、(0.05, 0.2)、[0.2, +∞]三个区间,然后计算每个区间的概率。在我们这个例子中,F1等于0.1,落在第二个区间,所以计算的时候,就使用第二个区间的发生概率。

  根据统计资料,可得:

  P(F1|C0) = 0.5, P(F1|C1) = 0.1 
  P(F2|C0) = 0.7, P(F2|C1) = 0.2 
  P(F3|C0) = 0.2, P(F3|C1) = 0.9

因此,

  P(F1|C0) P(F2|C0) P(F3|C0) P(C0) 
    = 0.5 x 0.7 x 0.2 x 0.89 
    = 0.0623

  P(F1|C1) P(F2|C1) P(F3|C1) P(C1) 
    = 0.1 x 0.2 x 0.9 x 0.11 
    = 0.00198

  可以看到,虽然这个用户没有使用真实头像,但是他是真实账号的概率,比虚假账号高出30多倍,因此判断这个账号为真。

四、性别分类的例子

  本例摘自维基百科,关于处理连续变量的另一种方法。

  下面是一组人类身体特征的统计资料。

  性别  身高(英尺) 体重(磅)  脚掌(英寸)

  男    6       180     12 
  男    5.92     190     11 
  男    5.58     170     12 
  男    5.92     165     10 
  女    5       100     6 
  女    5.5      150     8 
  女    5.42     130     7 
  女    5.75     150     9

  已知某人身高6英尺、体重130磅,脚掌8英寸,请问该人是男是女?

  根据朴素贝叶斯分类器,计算下面这个式子的值。

P(身高|性别) x P(体重|性别) x P(脚掌|性别) x P(性别)

  这里的困难在于,由于身高、体重、脚掌都是连续变量,不能采用离散变量的方法计算概率。而且由于样本太少,所以也无法分成区间计算。怎么办?

  这时,可以假设男性和女性的身高、体重、脚掌都是正态分布,通过样本计算出均值和方差,也就是得到正态分布的密度函数。有了密度函数,就可以把值代入,算出某一点的密度函数的值。

  比如,男性的身高是均值5.855、方差0.035的正态分布。所以,男性的身高为6英尺的概率的相对值等于1.5789(大于1并没有关系,因为这里是密度函数的值,只用来反映各个值的相对可能性)。

  有了这些数据以后,就可以计算性别的分类了。

  P(身高=6|男) x P(体重=130|男) x P(脚掌=8|男) x P(男) 
    = 6.1984 x e-9

  P(身高=6|女) x P(体重=130|女) x P(脚掌=8|女) x P(女) 
    = 5.3778 x e-4

  可以看到,女性的概率比男性要高出将近10000倍,所以判断该人为女性。

[Machine Learning & Algorithm] 朴素贝叶斯算法(Naive Bayes)的更多相关文章

  1. PGM:贝叶斯网表示之朴素贝叶斯模型naive Bayes

    http://blog.csdn.net/pipisorry/article/details/52469064 独立性质的利用 条件参数化和条件独立性假设被结合在一起,目的是对高维概率分布产生非常紧凑 ...

  2. 【分类算法】朴素贝叶斯(Naive Bayes)

    0 - 算法 给定如下数据集 $$T=\{(x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\},$$ 假设$X$有$J$维特征,且各维特征是独立分布的,$Y$有$K$种取值.则 ...

  3. 【机器学习实战】第4章 朴素贝叶斯(Naive Bayes)

    第4章 基于概率论的分类方法:朴素贝叶斯 朴素贝叶斯 概述 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类.本章首先介绍贝叶斯分类算法的基础——贝叶斯定理.最后,我们 ...

  4. 朴素贝叶斯(naive bayes)算法及实现

    处女文献给我最喜欢的算法了 ⊙▽⊙ ---------------------------------------------------我是机智的分割线----------------------- ...

  5. 模式识别之贝叶斯---朴素贝叶斯(naive bayes)算法及实现

    处女文献给我最喜欢的算法了 ⊙▽⊙ ---------------------------------------------------我是机智的分割线----------------------- ...

  6. 朴素贝叶斯(Naive Bayes)

    1.朴素贝叶斯模型 朴素贝叶斯分类器是一种有监督算法,并且是一种生成模型,简单易于实现,且效果也不错,需要注意,朴素贝叶斯是一种线性模型,他是是基于贝叶斯定理的算法,贝叶斯定理的形式如下: \[P(Y ...

  7. 深入理解朴素贝叶斯(Naive Bayes)

    https://blog.csdn.net/li8zi8fa/article/details/76176597 朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法.朴素贝叶斯原理简 ...

  8. 【Spark机器学习速成宝典】模型篇04朴素贝叶斯【Naive Bayes】(Python版)

    目录 朴素贝叶斯原理 朴素贝叶斯代码(Spark Python) 朴素贝叶斯原理 详见博文:http://www.cnblogs.com/itmorn/p/7905975.html 返回目录 朴素贝叶 ...

  9. 【机器学习速成宝典】模型篇05朴素贝叶斯【Naive Bayes】(Python版)

    目录 先验概率与后验概率 条件概率公式.全概率公式.贝叶斯公式 什么是朴素贝叶斯(Naive Bayes) 拉普拉斯平滑(Laplace Smoothing) 应用:遇到连续变量怎么办?(多项式分布, ...

随机推荐

  1. 第2章 Linux系统安装(2)_Linux系统分区及文件系统

    2. 系统分区 2.1 分区类型 (1)主分区:最多只能有4个 (2)扩展分区 ①最多只能有1个,主分区加扩展分区最多有4个. ②不能写入数据,只能包含逻辑分区 (3)逻辑分区 2.2 格式化(高级格 ...

  2. Hibernate第三次测试错题解析

    此题目考查的是Hibernate查询缓存适用的场合,对于经常使用的查询语句, 如果启用了查询缓存,当第一次执行查询语句时,Hibernate会把查询结果存放在第二缓存中. 以后再次执行该查询语句时,只 ...

  3. 鼠标/手指相对于元素的坐标(px转百分比)

    鼠标/手指相对于元素的坐标:鼠标或手指当前的位置 - 元素距离文档的位置 px转百分比:px / 文档尺寸 * 100 获取手指触摸在屏幕中相对于元素的坐标(px转百分比): $('#div').on ...

  4. sql server 排名函数:DENSE_RANK

    一.需求 之前sql server 的排名函数用得最多的应该是RoW_NUMBER()了,我通常用ROW_NUMBER() + CTE 来实现分页:今天逛园,看到另一个内置排名函数还不错,自己顺便想了 ...

  5. Android开发自学笔记(Android Studio)—4.界面编程与View组件简单介绍

    一.引言 Android应用开发最重要的一份内容就是界面的开发,无论你程序包含的内容多么优秀,如若没有一个良好的用户交互界面,最终也只是会被用户所遗弃.Android SDK提供了大量功能丰富的UI组 ...

  6. CCPC2016沈阳站

    A.模拟 B.模拟 C(hdu5950):(矩阵快速幂) 题意:求f(n)=2f(n-2)+f(n-1)+n^4 分析:矩阵快速幂,(f(n),f(n-1),n^4,n^3,n^2,n,1) 注意:矩 ...

  7. python学习之day4,函数

    1.函数的定义:  函数是指将一组语句的集合通过一个名字(函数名)封装起来,要想执行这个函数,只需调用其函数名即可    特性: 减少重复代码 使程序变的可扩展 使程序变得易维护 语法定义: def ...

  8. .net项目在linux平台的CI流程(基于Jenkins+mono+jexus)

    内容较多,主要分为以下4方面内容: Jenkins的安装部署(centos 7+) .net在linux平台CI流程所需的插件管理&配置 Jenkins配置连接Gitlab(也可使用对应插件连 ...

  9. iOS开发UI篇—懒加载

    iOS开发UI篇—懒加载 1.懒加载基本 懒加载——也称为延迟加载,即在需要的时候才加载(效率低,占用内存小).所谓懒加载,写的是其get方法. 注意:如果是懒加载的话则一定要注意先判断是否已经有了, ...

  10. 关于LuCi

    好吧,又长见识了...相见恨晚的赶脚,恩,居然是我喜欢的lua.其主页在这里:http://luci.subsignal.org/ The initial reason for this projec ...