生活中很多场合需要用到分类,比如新闻分类、病人分类等等。

  本文介绍朴素贝叶斯分类器(Naive Bayes classifier),它是一种简单有效的常用分类算法。

一、病人分类的例子

  让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难。

  某个医院早上收了六个门诊病人,如下表。

  症状  职业   疾病

  打喷嚏 护士   感冒 
  打喷嚏 农夫   过敏 
  头痛  建筑工人 脑震荡 
  头痛  建筑工人 感冒 
  打喷嚏 教师   感冒 
  头痛  教师   脑震荡

  现在又来了第七个病人,是一个打喷嚏的建筑工人。请问他患上感冒的概率有多大?

  根据贝叶斯定理

 P(A|B) = P(B|A) P(A) / P(B)

  可得

   P(感冒|打喷嚏x建筑工人) 
    = P(打喷嚏x建筑工人|感冒) x P(感冒) 
    / P(打喷嚏x建筑工人)

  假定"打喷嚏"和"建筑工人"这两个特征是独立的,因此,上面的等式就变成了

   P(感冒|打喷嚏x建筑工人) 
    = P(打喷嚏|感冒) x P(建筑工人|感冒) x P(感冒) 
    / P(打喷嚏) x P(建筑工人)

  这是可以计算的。

  P(感冒|打喷嚏x建筑工人) 
    = 0.66 x 0.33 x 0.5 / 0.5 x 0.33 
    = 0.66

  因此,这个打喷嚏的建筑工人,有66%的概率是得了感冒。同理,可以计算这个病人患上过敏或脑震荡的概率。比较这几个概率,就可以知道他最可能得什么病。

  这就是贝叶斯分类器的基本方法:在统计资料的基础上,依据某些特征,计算各个类别的概率,从而实现分类。

二、朴素贝叶斯分类器的公式

  假设某个体有n项特征(Feature),分别为F1、F2、...、Fn。现有m个类别(Category),分别为C1、C2、...、Cm。贝叶斯分类器就是计算出概率最大的那个分类,也就是求下面这个算式的最大值:

 P(C|F1F2...Fn) 
  = P(F1F2...Fn|C)P(C) / P(F1F2...Fn)

  由于 P(F1F2...Fn) 对于所有的类别都是相同的,可以省略,问题就变成了求

 P(F1F2...Fn|C)P(C)

  的最大值。

  朴素贝叶斯分类器则是更进一步,假设所有特征都彼此独立,因此

 P(F1F2...Fn|C)P(C) 
  = P(F1|C)P(F2|C) ... P(Fn|C)P(C)

  上式等号右边的每一项,都可以从统计资料中得到,由此就可以计算出每个类别对应的概率,从而找出最大概率的那个类。

  虽然"所有特征彼此独立"这个假设,在现实中不太可能成立,但是它可以大大简化计算,而且有研究表明对分类结果的准确性影响不大。

  下面再通过两个例子,来看如何使用朴素贝叶斯分类器。

三、账号分类的例子

  本例摘自张洋的《算法杂货铺----分类算法之朴素贝叶斯分类》

  根据某社区网站的抽样统计,该站10000个账号中有89%为真实账号(设为C0),11%为虚假账号(设为C1)。

  C0 = 0.89

  C1 = 0.11

  接下来,就要用统计资料判断一个账号的真实性。假定某一个账号有以下三个特征:

    F1: 日志数量/注册天数 
    F2: 好友数量/注册天数 
    F3: 是否使用真实头像(真实头像为1,非真实头像为0)

    F1 = 0.1 
    F2 = 0.2 
    F3 = 0

  请问该账号是真实账号还是虚假账号?

  方法是使用朴素贝叶斯分类器,计算下面这个计算式的值。

    P(F1|C)P(F2|C)P(F3|C)P(C)

  虽然上面这些值可以从统计资料得到,但是这里有一个问题:F1和F2是连续变量,不适宜按照某个特定值计算概率。

  一个技巧是将连续值变为离散值,计算区间的概率。比如将F1分解成[0, 0.05]、(0.05, 0.2)、[0.2, +∞]三个区间,然后计算每个区间的概率。在我们这个例子中,F1等于0.1,落在第二个区间,所以计算的时候,就使用第二个区间的发生概率。

  根据统计资料,可得:

  P(F1|C0) = 0.5, P(F1|C1) = 0.1 
  P(F2|C0) = 0.7, P(F2|C1) = 0.2 
  P(F3|C0) = 0.2, P(F3|C1) = 0.9

因此,

  P(F1|C0) P(F2|C0) P(F3|C0) P(C0) 
    = 0.5 x 0.7 x 0.2 x 0.89 
    = 0.0623

  P(F1|C1) P(F2|C1) P(F3|C1) P(C1) 
    = 0.1 x 0.2 x 0.9 x 0.11 
    = 0.00198

  可以看到,虽然这个用户没有使用真实头像,但是他是真实账号的概率,比虚假账号高出30多倍,因此判断这个账号为真。

四、性别分类的例子

  本例摘自维基百科,关于处理连续变量的另一种方法。

  下面是一组人类身体特征的统计资料。

  性别  身高(英尺) 体重(磅)  脚掌(英寸)

  男    6       180     12 
  男    5.92     190     11 
  男    5.58     170     12 
  男    5.92     165     10 
  女    5       100     6 
  女    5.5      150     8 
  女    5.42     130     7 
  女    5.75     150     9

  已知某人身高6英尺、体重130磅,脚掌8英寸,请问该人是男是女?

  根据朴素贝叶斯分类器,计算下面这个式子的值。

P(身高|性别) x P(体重|性别) x P(脚掌|性别) x P(性别)

  这里的困难在于,由于身高、体重、脚掌都是连续变量,不能采用离散变量的方法计算概率。而且由于样本太少,所以也无法分成区间计算。怎么办?

  这时,可以假设男性和女性的身高、体重、脚掌都是正态分布,通过样本计算出均值和方差,也就是得到正态分布的密度函数。有了密度函数,就可以把值代入,算出某一点的密度函数的值。

  比如,男性的身高是均值5.855、方差0.035的正态分布。所以,男性的身高为6英尺的概率的相对值等于1.5789(大于1并没有关系,因为这里是密度函数的值,只用来反映各个值的相对可能性)。

  有了这些数据以后,就可以计算性别的分类了。

  P(身高=6|男) x P(体重=130|男) x P(脚掌=8|男) x P(男) 
    = 6.1984 x e-9

  P(身高=6|女) x P(体重=130|女) x P(脚掌=8|女) x P(女) 
    = 5.3778 x e-4

  可以看到,女性的概率比男性要高出将近10000倍,所以判断该人为女性。

[Machine Learning & Algorithm] 朴素贝叶斯算法(Naive Bayes)的更多相关文章

  1. PGM:贝叶斯网表示之朴素贝叶斯模型naive Bayes

    http://blog.csdn.net/pipisorry/article/details/52469064 独立性质的利用 条件参数化和条件独立性假设被结合在一起,目的是对高维概率分布产生非常紧凑 ...

  2. 【分类算法】朴素贝叶斯(Naive Bayes)

    0 - 算法 给定如下数据集 $$T=\{(x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\},$$ 假设$X$有$J$维特征,且各维特征是独立分布的,$Y$有$K$种取值.则 ...

  3. 【机器学习实战】第4章 朴素贝叶斯(Naive Bayes)

    第4章 基于概率论的分类方法:朴素贝叶斯 朴素贝叶斯 概述 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类.本章首先介绍贝叶斯分类算法的基础——贝叶斯定理.最后,我们 ...

  4. 朴素贝叶斯(naive bayes)算法及实现

    处女文献给我最喜欢的算法了 ⊙▽⊙ ---------------------------------------------------我是机智的分割线----------------------- ...

  5. 模式识别之贝叶斯---朴素贝叶斯(naive bayes)算法及实现

    处女文献给我最喜欢的算法了 ⊙▽⊙ ---------------------------------------------------我是机智的分割线----------------------- ...

  6. 朴素贝叶斯(Naive Bayes)

    1.朴素贝叶斯模型 朴素贝叶斯分类器是一种有监督算法,并且是一种生成模型,简单易于实现,且效果也不错,需要注意,朴素贝叶斯是一种线性模型,他是是基于贝叶斯定理的算法,贝叶斯定理的形式如下: \[P(Y ...

  7. 深入理解朴素贝叶斯(Naive Bayes)

    https://blog.csdn.net/li8zi8fa/article/details/76176597 朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法.朴素贝叶斯原理简 ...

  8. 【Spark机器学习速成宝典】模型篇04朴素贝叶斯【Naive Bayes】(Python版)

    目录 朴素贝叶斯原理 朴素贝叶斯代码(Spark Python) 朴素贝叶斯原理 详见博文:http://www.cnblogs.com/itmorn/p/7905975.html 返回目录 朴素贝叶 ...

  9. 【机器学习速成宝典】模型篇05朴素贝叶斯【Naive Bayes】(Python版)

    目录 先验概率与后验概率 条件概率公式.全概率公式.贝叶斯公式 什么是朴素贝叶斯(Naive Bayes) 拉普拉斯平滑(Laplace Smoothing) 应用:遇到连续变量怎么办?(多项式分布, ...

随机推荐

  1. [转]【无私分享:ASP.NET CORE 项目实战(第九章)】创建区域Areas,添加TagHelper

    本文转自:http://www.cnblogs.com/zhangxiaolei521/p/5808417.html 目录索引 [无私分享:ASP.NET CORE 项目实战]目录索引 简介 在Asp ...

  2. CCF考试

    第八次CCF考试记录 代码还不知道对不对,过两天出成绩. 成绩出来了,310分. 100+100+100+10+0: 考试13:27开始,17:30结束,提交第4题后不再答题,只是检查前四题的代码 第 ...

  3. java 链表数据结构

    首先,单链表相对于队列的优势在于存储地址不是连续的,这样的意义在于,操作其中的某一个位置的元素时不需要对之前的其他元素都进行内存操作,大大的为我们的计算机减压了.下面直接进入正题: 先要定义一个结点类 ...

  4. 洛谷P1372 又是毕业季I&&P1414 又是毕业季II[最大公约数]

    P1372 又是毕业季I 题目背景 “叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌.1000多个日夜的欢笑和泪水,全凝聚 ...

  5. KVO设计模式

    一,概述 KVO,即:Key-Value Observing,它提供一种机制,当指定的对象的属性被修改后,则对象就会接受到通知.简单的说就是每次指定的被观察的对象的属性被修改后,KVO就会自动通知相应 ...

  6. createElement与createDocumentFragment的点点区别

    在DOM操作里,createElement是创建一个新的节点,createDocumentFragment是创建一个文档片段. 网上可以搜到的大部分都是说使用createDocumentFragmen ...

  7. J2EE,J2SE,J2ME,JDK,SDK,JRE,JVM区别

    转自:http://www.metsky.com/archives/547.html 一.J2EE.J2SE.J2ME区别 J2EE——全称Java 2 Enterprise Edition,是Jav ...

  8. redis 学习笔记(1)-编译、启动、停止

    一.下载.编译 redis是以源码方式发行的,先下载源码,然后在linux下编译 1.1 http://www.redis.io/download 先到这里下载Stable稳定版,目前最新版本是2.8 ...

  9. 谈谈计算机上的那些存储器-Memory Hierarchy

    文章首发于浩瀚先森博客http://www.guohao1206.com/2016/12/07/1248.html 说到计算机上的存储器,很多人第一反应是硬盘,然后是内存. 其实在计算机上除了硬盘和内 ...

  10. 轻量级DAO层实践初体验

    最近快被 Hibernate 给坑哭了,有了自己动手实现 ORM 映射 DAO 的冲动. 工作之余折腾了快一星期,总算是有点小成就. 现打算将过程记录下来,方便自己后续回顾填补遗漏. 1. 传统 JD ...