UVA 11990 ``Dynamic'' Inversion (线段树套BIT,分治)
题目要求可转化为查询一个区间内有多少数比val大(或者小)。
区间用线段树分解(logN),每个区间维护一rank树。
rank可用BIT查询,往BIT里面插值,为了保证不同区间的BIT互不影响要先离散。
首先进行分治,分治的同时归并排序完成离散并计算保存出每个元素和其他元素构成的逆序对iv[i]。(据说这叫归并树
初始值将所有iv求和,一个对被算了两次所以除以二。
每次删除元素val就减去val对应的逆序对。
减去iv[val],但是多减去了和之前删掉元素构成的逆序对(这些逆序对已经算过一次)。
所以把删掉的元素加到线段树里面。
减去当前iv[val]之后,查询并加上当前元素val和之前位置以及之后位置构成逆序对。
复杂度
O(nlogn)预处理,O(m*logn*logn)回答
#include<bits/stdc++.h>
using namespace std; const int maxn = 2e5+, LogN = ; typedef long long ll;
ll invPair;
int a[maxn],p[maxn];
int iv[maxn];
int n; int s[maxn<<];
int C[LogN][maxn];
int Set[LogN][maxn]; #define para int o = 1, int l = 1,int r = n,int dep = 0
#define lo (o<<1)
#define ro (o<<1|1)
#define TEMP int mid = (l+r)>>1, lc = lo, rc = ro;
#define lsn lc, l, mid, dep+1
#define rsn rc, mid+1, r, dep+1 #define lb(x) ((x)&-(x))
int sum(int C[],int x)
{
int re = ;
while(x>){
re += C[x];
x -= lb(x);
}
return re;
} void add(int C[],int x,int d,int r)
{
while(x<=r){
C[x] += d;
x += lb(x);
}
} int qpos;
int ql,qr,val;
void queryPrefix(para)
{
if(<=l&&r<=qr){
int pos = upper_bound(Set[dep]+l,Set[dep]+r+,val)-Set[dep]-l;//等于等于val的最大元素的编号
invPair += s[o] - sum(C[dep]+l-,pos);//得到大于val的元素个数
}else {
TEMP
queryPrefix(lsn);
if(qr>mid) queryPrefix(rsn);
}
} void querySuffix(para)
{
if(ql<=l&&r<=n){
int pos = lower_bound(Set[dep]+l,Set[dep]+r+,val)-Set[dep]-l;//严格小于val的元素的编号
invPair += sum(C[dep]+l-,pos);
}else {
TEMP
if(ql<=mid) querySuffix(lsn);
querySuffix(rsn);
}
} void modify(para)
{
s[o]++;
if(l == r){
C[dep][l] = ;
}else{
TEMP
if(qpos<=mid) modify(lsn);
else modify(rsn);
int pos = upper_bound(Set[dep]+l,Set[dep]+r+,val)-Set[dep]-l;//val在set里,从1开始编号
add(C[dep]+l-,pos,,r-l+);//l-1是0号位,容纳r-l+1个元素
}
} //为保证BIT之间互不影响,merge_sort离散,同时计算逆序对
void discretize(para)
{
s[o] = ;
memset(C[dep]+l,,sizeof(int)*(r-l+));
if(l == r) {
Set[dep][l] = a[l];
return;
}else {
TEMP;
discretize(lsn);
discretize(rsn);
int p = l, q = mid+, k = l;
while(p<=mid || q<=r){
if(q > r|| (p <= mid && Set[dep+][p] <= Set[dep+][q]) ){
iv[Set[dep+][p]] += k-p;//和后面的数构成逆序对
Set[dep][k++] = Set[dep+][p++];
}else {
iv[Set[dep+][q]] += mid-p+;//和前面的数构成逆序对
Set[dep][k++] = Set[dep+][q++];
}
}
}
} //#define LOCAL
int main()
{
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif
int m;
while(~scanf("%d%d",&n,&m)){
memset(iv+,,sizeof(int)*n);
for(int i = ; i <= n; i++){
scanf("%d",a+i);
p[a[i]] = i;
}
invPair = ;
discretize();
for(int i = ; i <= n; i++){
invPair += iv[i];
}
invPair >>= ;
while(m--){
scanf("%d",&val);
printf("%lld\n",invPair);
invPair -= iv[val];
qr = p[val]-;
ql = p[val]+;
if(qr>=) queryPrefix();
if(ql<=n) querySuffix();
qpos = p[val];
modify();
}
}
return ;
}
UVA 11990 ``Dynamic'' Inversion (线段树套BIT,分治)的更多相关文章
- UVA 11990 ”Dynamic“ Inversion(线段树+树状数组)
[题目链接] UVA11990 [题目大意] 给出一个数列,每次删去一个数,求一个数删去之前整个数列的逆序对数. [题解] 一开始可以用树状数组统计出现的逆序对数量 对于每个删去的数,我们可以用线段树 ...
- UVA 11990 ``Dynamic'' Inversion 动态逆序对
``Dynamic'' Inversion Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 https://uva.onlinejudge.org/index ...
- uva 12003 Array Transformer (线段树套平衡树)
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- BZOJ.1901.Dynamic Rankings(线段树套平衡树 Splay)
题目链接or Here 题意:n个数,有两个操作:1.修改某个数为v:2.询问一段区间第k小的数 如果没有修改,则可以用线段树,每个节点P[a,b]存储大小为b-a+1的数组,代表其中的数 同时,这个 ...
- UVA 11990 ``Dynamic'' Inversion (序列分治)
26天以前做过的一道题,之前的做法是分治预处理,树套树在线修改,复杂度为O(nlogn+m*logn*logn),代码量较大. 本来想学习一下cdq分治的,看到论文上的凸包.斜率就暂时放一边了,只知道 ...
- UVA 11990 `Dynamic'' Inversion CDQ分治, 归并排序, 树状数组, 尺取法, 三偏序统计 难度: 2
题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...
- [BZOJ 1901] Dynamic Rankings 【树状数组套线段树 || 线段树套线段树】
题目链接:BZOJ - 1901 题目分析 树状数组套线段树或线段树套线段树都可以解决这道题. 第一层是区间,第二层是权值. 空间复杂度和时间复杂度均为 O(n log^2 n). 线段树比树状数组麻 ...
- BZOJ 1901: Zju2112 Dynamic Rankings 区间k大 带修改 在线 线段树套平衡树
之前写线段树套splay数组版..写了6.2k..然后弃疗了.现在发现还是很水的..嘎嘎.. zju过不了,超时. upd:才发现zju是多组数据..TLE一版才发现.然后改了,MLE...手写内存池 ...
- 树套树Day1线段树套平衡树bzoj3196
您需要写一种数据结构,来维护一个有序数列,其中需要提供以下操作:1.查询k在区间内的排名2.查询区间内排名为k的值3.修改某一位值上的数值4.查询k在区间内的前驱(前驱定义为小于x,且最大的数)5.查 ...
随机推荐
- 洛谷P2119 魔法阵
P2119 魔法阵 题目描述 六十年一次的魔法战争就要开始了,大魔法师准备从附近的魔法场中汲取魔法能量. 大魔法师有m个魔法物品,编号分别为1,2,...,m.每个物品具有一个魔法值,我们用Xi表示编 ...
- 死磕 java同步系列之synchronized解析
问题 (1)synchronized的特性? (2)synchronized的实现原理? (3)synchronized是否可重入? (4)synchronized是否是公平锁? (5)synchro ...
- POJ1046 Color Me Less
题目来源:http://poj.org/problem?id=1046 题目大意: 在RGB颜色空间中,用下面的公式来度量两个颜色值的距离. 现给出16个RGB表示的颜色,和一些用于测试的颜色,求被测 ...
- Unity 动画系统目录
引言 提到动画,你想到的是什么? 图片在循环播放构成的动画.UI物体的循环变色.2D 3D物体在循环运动.链条弹簧的运动.3D的玩家在行走奔跑挥剑.非人形的运动... 动画实现方式的分类 动画实现的方 ...
- LDAP--对某些AD属性值是字节数组byte[]情况的类型转换方法
//BitConverter.ToBoolean((searchResult.Properties["mDBUseDefaults"][0] as byte[]), 0); row ...
- 73th LeetCode Weekly Contest Escape The Ghosts
You are playing a simplified Pacman game. You start at the point (0, 0), and your destination is(tar ...
- 练习三十八:矩阵for循环应用
习题如下: 求一个3*3矩阵对角线元素之和 利用for循环控制输出二维数组,再将a[i][j]累加后输出 a = [] sum1 = 0.0 for i in range(3): a.append([ ...
- 阿里巴巴Java开发手册_不建议在循环体中使用+进行字符串拼接
18. [推荐]循环体内,字符串的连接方式,使用StringBuilder的append方法进行扩展. 说明:下例中,反编译出的字节码文件显示每次循环都会new出一个StringBuilder对象,然 ...
- Android中常用的几种加密
1.数字摘要 是指通过算法将长数据变为短数据,通常用来标识数据的唯一性,是否被修改,常用的加密算法有md5和sha1两种,如Android的App签名也是用的这两种算法. md5具有不可逆性,也可用来 ...
- bzoj 3732: Network 树上两点边权最值
http://www.lydsy.com/JudgeOnline/problem.php?id=3732 首先想到,要使得最长边最短,应该尽量走最短的边,在MST上. 然后像LCA那样倍增娶个最大值 ...