原文转载自:http://blog.csdn.net/yzl_rex/article/details/7908259

回文串定义:“回文串”是一个正读和反读都一样的字符串,比如“level”或者“noon”等等就是回文串。回文子串,顾名思义,即字符串中满足回文性质的子串。

经常有一些题目围绕回文子串进行讨论,比如POJ3974最长回文,求最长回文子串的长度。朴素算法是依次以每一个字符为中心向两侧进行扩展,显然这个复杂度是O(N^2)的,关于字符串的题目常用的算法有KMP、后缀数组、AC 自动机,这道题目利用扩展KMP可以解答,其时间复杂度也很快O(N*logN)。

但是,今天笔者介绍一个专门针对回文子串的算法,其时间复杂度为O(n),这就是manacher 算法

大家都知道,求回文串时需要判断其奇偶性,也就是求aba 和abba 的算法略有差距。然而,这个算法做了一个简单的处理,很巧妙地把奇数长度回文串与偶数长度回文串统一考虑,也就是在每个相邻的字符之间插入一个分隔符,串的首尾也要加,当然这个分隔符不能再原串中出现,一般可以用‘#’或者‘$’等字符。例如:

原串:abaab

新串:#a#b#a#a#b#

这样一来,原来的奇数长度回文串还是奇数长度,偶数长度的也变成以‘#’为中心奇数回文串了

算法的中心思想

用一个辅助数组P 记录以每个字符为中心的最长回文半径,也就是P[i]记录以Str[i]字符为中心的最长回文串半径。P[i]最小为1,此时回文串为Str[i]本身。

我们可以对上述例子写出其P 数组,如下

新串: # a # b # a # a # b #

P[] : 1 2 1 4 1 2 5 2 1 2 1

我们可以证明P[i]-1 就是以Str[i]为中心的回文串在原串当中的长度。

证明:

1、显然L=2*P[i]-1 即为新串中以Str[i]为中心最长回文串长度。

2、以Str[i]为中心的回文串一定是以#开头和结尾的,例如“#b#b#”或“#b#a#b#”所以L 减去最前或者最后的‘#’字符就是原串中长度 的二倍,即原串长度为(L-1)/2,化简的P[i]-1。得证。

依次从前往后求得P 数组就可以了,这里用到了DP(动态规划)的思想, 也就是求P[i] 的时候,前面的P[]值已经得到了,我们利用回文串的特殊性质可以进行一个大大的优化。

先把核心代码贴上:

   for (i = 0; i < len; i++){
if (maxid > i){
p[i] = min(p[2*id - i], maxid - i);
}
else{
p[i] = 1;
}
while (newstr[i+p[i]] == newstr[i-p[i]])
p[i]++;
if (p[i] + i > maxid){
maxid = p[i] + i;
id = i;
}
if (ans < p[i])
ans = p[i];
}

为了防止求P[i]向两边扩展时可能数组越界,我们需要在数组最前面和最后面加一个特殊字符,令P[0]=‘$’最后位置默认为‘\0’不需要特殊处理。此外,我们用MaxId 变量记录在求i 之前的回文串中,延伸至最右端的位置,同时用id 记录取这个MaxId 的id 值。通过下面这句话,算法避免了很多没必要的重复匹配。


if (maxid > i){
p[i] = min(p[2*id - i], maxid - i);
}

那么这句话是怎么得来的呢,其实就是利用了回文串的对称性,如下图,

j=2*id-1 即为i 关于id 的对称点,根据对称性,P[j]的回文串也是可以对称到i 这边的,但是如果P[j]的回文串对称过来以后超过MaxId 的话,超出部分就不能对称过来了,如下图,

所以这里P[i]为的下限为两者中的较小者,p[i]=Min(p[2*id-i],MaxId-i)。算法的有效比较次数为MaxId 次,所以说这个算法的时间复杂度为O(n)。

下面就贴一个具体代码,求解最长回文字符串的代码:

 #include <iostream>
#include <algorithm>
#include <string>
using namespace std;
const int MAX = 100001;
int len, p[2*MAX];
char str[2*MAX], newstr[2*MAX]; void change()
{
int i;
newstr[0] = '@';
newstr[1] = '#';
for (i = 0; i < len; i++){
newstr[2*i + 2] = str[i];
newstr[2*i + 3] = '#';
}
newstr[2*len + 2] = '\0';
return ;
} void Manacher()
{
int i, j, id, maxid = 0, ans = 1;
len = 2 * len + 2;
for (i = 0; i < len; i++){
if (maxid > i){
p[i] = min(p[2*id - i], maxid - i);
}
else{
p[i] = 1;
}
while (newstr[i+p[i]] == newstr[i-p[i]])
p[i]++;
if (p[i] + i > maxid){
maxid = p[i] + i;
id = i;
}
if (ans < p[i])
ans = p[i];
} for (i = id, j = 0; i < id + ans; i++){
if (newstr[i] != '#'){
str[j] = newstr[i];
j++;
}
}
str[id+ans] = '\0';
cout << ans - 1 << " " << str << endl;
return ;
} int main()
{
while (scanf("%s", &str)){
if (strcmp(str, "END") == 0) break;
len = strlen(str);
change();
Manacher();
} system("pause");
}

Manacher算法:求解最长回文字符串,时间复杂度为O(N)的更多相关文章

  1. manacher算法求最长回文子序列

    一:背景 给定一个字符串,求出其最长回文子串.例如: s="abcd",最长回文长度为 1: s="ababa",最长回文长度为 5: s="abcc ...

  2. manacher算法求最长回文子串

    一:背景 给定一个字符串,求出其最长回文子串.例如: s="abcd",最长回文长度为 1: s="ababa",最长回文长度为 5: s="abcc ...

  3. Manacher算法 求 最长回文子串

    1 概述(扯淡) 在了解Manacher算法之前,我们得先知道什么是回文串和子串. 回文串,就是正着看反着看都一样的字符串.比如说"abba"就是一个回文串,"abbc& ...

  4. Manacher算法 - 求最长回文串的利器

    求最长回文串的利器 - Manacher算法 Manacher主要是用来求某个字符串的最长回文子串. 不要被manacher这个名字吓倒了,其实manacher算法很简单,也很容易理解,程序短,时间复 ...

  5. Manacher算法——求最长回文子串

    首先,得先了解什么是回文串.回文串就是正反读起来就是一样的,如“abcdcba”.我们要是直接采用暴力方法来查找最长回文子串,时间复杂度为O(n^3),好一点的方法是枚举每一个字符,比较较它左右距离相 ...

  6. manacher 算法(最长回文串)

    manacher算法: 定义数组p[i]表示以i为中心的(包含i这个字符)回文串半径长 将字符串s从前扫到后for(int i=0;i<strlen(s);++i)来计算p[i],则最大的p[i ...

  7. 使用manacher算法解决最长回文子串问题

    要解决的问题 求一个字符串最长回文子串是什么.且时间复杂度 O(N) 具体描述可参考: LeetCode_5_最长回文子串 LintCode_200_最长回文子串 暴力解法 以每个字符为中心向左右两边 ...

  8. hdu 3068 最长回文 (Manacher算法求最长回文串)

    参考博客:Manacher算法--O(n)回文子串算法 - xuanflyer - 博客频道 - CSDN.NET 从队友那里听来的一个算法,O(N)求得每个中心延伸的回文长度.这个算法好像比较偏门, ...

  9. leetcode 5 Longest Palindromic Substring(Manacher算法求最长回文串)

    应用一下manacher算法就可以O(n)求出结果了.可以参考hdu3068 substr(start,length)函数是这样用的: substr 方法 返回一个从指定位置开始,并具有指定长度的子字 ...

随机推荐

  1. 使用Aspose.Cell控件实现Excel高难度报表的生成

    1.使用Aspose.Cell控件实现Excel高难度报表的生成(一) http://www.cnblogs.com/wuhuacong/archive/2011/02/23/1962147.html ...

  2. plupload2.1.2文件合并

    1.前端 (1)依赖文件: <link type="text/css" rel="stylesheet" href="~/Content/plu ...

  3. autofac 一个接口多个实现的顺序执行

    接口: namespace AutofacTest.Interface { public interface IUserInfo { string GetUserINfo(int uid); int ...

  4. JS之获取子节点

    在JS中获取子节点有以下几种方法: firstElementChild.firstChild.childNodes和children 我们通过一个例子来分析这几种方法的区别(获取div下的p标签) 输 ...

  5. 利用ASP.NET里自带的站点地图工具制作网站站点地图

    站点地图很方便能快速给我们导航我们要去访问的地址,能按层级关系分门别类,给用户一个很好的用户体验,很好的看到自己当前所在的网站位置 站点地图,又称网站地图,它就是一个页面,上面放置了网站上所有页面的链 ...

  6. "ssllabs" website and "testssl" website

    "https://www.ssllabs.com" could scan your server and give results about the weakness of yo ...

  7. April 17 2017 Week 16 Monday

    You will find that it is necessary to let things go; simply for the reason that they are heavy. 你会明白 ...

  8. while循环小例

    # 使用while 循环输入 1 2 3 4 5 6 8 9 10 n = 1 while n <= 10: if n == 7: pass else: print(n) n = n + 1 # ...

  9. 零基础Centos6搭建Git服务器,及常见问题解决

    1.编译安装git 2.1 服务器端: #yum install curl-devel expat-devel gettext-devel openssl-devel zlib-devel perl- ...

  10. python spark wingide