感觉自己被早上的名校协作体和下午的数学题虐哭了,每天为自己的菜发愁……

发现$a_{i}$很小,开一个桶记一下每个数 出现的个数,设$c_{i} = \sum_{j = 1}^{n}(a_{j} == i)$。

我们知道$lcm(i, j) == \frac{ij}{gcd(i, j)}$。

记$m = max(a_{i})$。

那么  $\sum_{i = 1}^{n}\sum_{j = 1}^{n}lcm(a_{i}, a_{j}) \  = \sum_{i = 1}^{m}\sum_{j = 1}^{m}\frac{ij}{gcd(i, j)} * c_{i} * c_{j}$。

反演一下,得到  $\sum_{d = 1}^{m}d\sum_{t = 1}^{\left \lfloor \frac{m}{d} \right \rfloor}t^{2} * \mu (t)\sum_{u = 1}^{\left \lfloor \frac{m}{dt} \right \rfloor}\sum_{v = 1}^{\left \lfloor \frac{m}{dt} \right \rfloor}u * v * c_{dtu} * c_{dtv}$。

枚举$T = dt$,得到   $\sum_{T = 1}^{m}(T (\sum_{d | T}d * \mu (d)))(\sum_{u = 1}^{\left \lfloor \frac{m}{T} \right \rfloor}u * c_{Tu})(\sum_{v = 1}^{\left \lfloor \frac{m}{T} \right \rfloor}v * c_{Tv})$。

设$h(T) = \sum_{d | T}d * \mu (d)$,$g(T) = \sum_{d = 1}^{\left \lfloor \frac{m}{T} \right \rfloor}d * c_{Td}$,那么最后的答案就变成了$\sum_{T = 1}^{m}T * h(i) * g^{2}(i)$。

发现$h(i)$是一个积性函数,有$h(1) = 1, h(p) = 1 - p, h(p^{k}) = h(p)$,可以线性筛。

而$g(i)$只要暴力算就可以了。

时间复杂度$O(nlogn)$。

Code:

#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll; const int N = 5e4 + ; int n, m = , pCnt = , pri[N], low[N];
ll h[N], g[N], c[N];
bool np[N]; template <typename T>
inline void read(T &X) {
X = ; char ch = ; T op = ;
for(; ch > ''|| ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} inline void chkMax(int &x, int y) {
if(y > x) x = y;
} inline void sieve() {
h[] = ;
for(int i = ; i <= m; i++) {
if(!np[i]) {
pri[++pCnt] = i;
low[i] = i;
h[i] = (ll) - i;
}
for(int j = ; j <= pCnt && i * pri[j] <= m; j++) {
np[i * pri[j]] = ;
if(i % pri[j] == ) {
low[i * pri[j]] = low[i] * pri[j];
if(low[i] == i) h[i * pri[j]] = h[i];
else h[i * pri[j]] = h[i / low[i]] * h[pri[j] * low[i]];
break;
}
low[i * pri[j]] = pri[j];
h[i * pri[j]] = h[i] * h[pri[j]];
}
} /* for(int i = 1; i <= m; i++)
printf("%lld ", h[i]);
printf("\n"); */
} int main() {
read(n);
for(int i = ; i <= n; i++) {
ll x; read(x);
c[x]++;
chkMax(m, x);
} /* for(int i = 1; i <= m; i++)
printf("%lld ", c[i]);
printf("\n"); */ sieve();
for(int i = ; i <= m; i++)
for(int j = ; j <= m / i; j++)
g[i] += c[i * j] * j; /* for(int i = 1; i <= m; i++)
printf("%lld ", g[i]);
printf("\n"); */ ll ans = 0LL;
for(int i = ; i <= m; i++)
ans += i * h[i] * g[i] * g[i]; printf("%lld\n", ans);
return ;
}

   

Luogu 3911 最小公倍数之和的更多相关文章

  1. 51NOD 1238 最小公倍数之和 V3 [杜教筛]

    1238 最小公倍数之和 V3 三种做法!!! 见学习笔记,这里只贴代码 #include <iostream> #include <cstdio> #include < ...

  2. 51nod1363 最小公倍数之和

    题目描述 给出一个n,求1-n这n个数,同n的最小公倍数的和. 例如:n = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30,6,加在一起 = 66. 由于结果很大,输出Mo ...

  3. 51nod 1238 最小公倍数之和 V3

    51nod 1238 最小公倍数之和 V3 求 \[ \sum_{i=1}^N\sum_{j=1}^N lcm(i,j) \] \(N\leq 10^{10}\) 先按照套路推一波反演的式子: \[ ...

  4. 51nod 1190 最小公倍数之和 V2

    给出2个数a, b,求LCM(a,b) + LCM(a+1,b) + .. + LCM(b,b). 例如:a = 1, b = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30 ...

  5. 51nod 1363 最小公倍数之和 ——欧拉函数

    给出一个n,求1-n这n个数,同n的最小公倍数的和.例如:n = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30,6,加在一起 = 66. 由于结果很大,输出Mod 1000 ...

  6. 51Nod 最大公约数之和V1,V2,V3;最小公倍数之和V1,V2,V3

    1040 最大公约数之和 给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6 1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 输入 1个数N ...

  7. BNU 12846 LCM Extreme 最小公倍数之和(线性欧拉筛选+递推)

    LCM Extreme Time Limit: 3000ms Memory Limit: 131072KB   This problem will be judged on UVALive. Orig ...

  8. 51 NOD 1238 最小公倍数之和 V3

    原题链接 最近被51NOD的数论题各种刷……(NOI快到了我在干什么啊! 然后发现这题在网上找不到题解……那么既然A了就来骗一波访问量吧…… (然而并不怎么会用什么公式编辑器,写得丑也凑合着看吧…… ...

  9. 51nod1238 最小公倍数之和 V3 莫比乌斯函数 杜教筛

    题意:求\(\sum_{i = 1}^{n}\sum_{j = 1}^{n}lcm(i, j)\). 题解:虽然网上很多题解说用mu卡不过去,,,不过试了一下貌似时间还挺充足的,..也许有时间用phi ...

随机推荐

  1. Senior Manufacturing Technical Manager

    Job Description As a Manufacturing Technical Manager, you will be responsible for bringing new produ ...

  2. git公私钥的拷贝

    1.场景 由于我换了一台电脑,为了能访问远程仓库,我就把原来电脑上的私钥和config文件拷贝过来 2.出现问题及解决方案 git clone server:xxx_service_express 报 ...

  3. NOIP模拟题 斐波那契数列

    题目大意 给定长度为$n$序列$A$,将它划分成尽可能少的若干部分,使得任意部分内两两之和均不为斐波那契数列中的某一项. 题解 不难发现$2\times 10^9$之内的斐波那契数不超过$50$个 先 ...

  4. Photon多人游戏开发教程

    http://gad.qq.com/article/detail/26112 PUN介绍 入门 Photon Unity Networking(首字母缩写PUN)是一个Unity多人游戏插件包.它提供 ...

  5. nginx之 [error] 6702#0:XXX is forbidden (13: Permission denied)

    问题描述: 配置完 nginx 两个虚拟机后,客户端能够访问原始的server ,新增加的 server 虚拟机 不能够访问,报错如下页面 解决过程: 1. 查看报错日志[root@mysql03 n ...

  6. UOJ #55 & 洛谷 P3920 紫荆花之恋 —— 动态点分治+替罪羊树

    题目:http://uoj.ac/problem/55 https://www.luogu.org/problemnew/show/P3920 参考博客:https://www.cnblogs.com ...

  7. laravel的批量插入

    在日常开发中,用到批量插入的操作还是挺多的.记得很早很早以前,我还是在循环中写sql插入,结果被项目经理按在地上摩擦.好吧,性能这东西,用不到的时候还好,万一性能成为瓶颈,那代码优化,数据库优化就首当 ...

  8. (转)Dynamic Web project转成Maven项目

    本文转载自:http://my.oschina.net/twosnail/blog/369125 1.新建Dynamic Web Project 1.File -> New -> Othe ...

  9. MySQL/InnoDB tips & tricks

    本文讨论的是 MySQL 5.7. 1.混用 * 和列名会产生解析错误,要避免这个错误,要使用 tbl_name.* 的格式. 2.where 子句中不能使用 select 中定义的别名,因为 SQL ...

  10. Hudson和Jenkins的关系

    Jenkins is an open source continuous integration tool written in Java. The project was forked from H ...