摘自:http://aircconline.com/ijdkp/V4N6/4614ijdkp04.pdf

In the syntactical approach we define binary attributes that correspond to each fixed length substring of words (or characters). These substrings are a framework for near-duplicate detection called shingles. We can say that a shingle is a sequence of words. A shingle has two parameters: the length and the offset. The length of the shingle is the number of the words in a shingle and the
offset is the distance between the beginnings of the shingles. We assign a hash code to each shingle, so equal shingles have the same hash code and it is improbable that different shingles
would have the same hash codes (this depends on the hashing algorithm we use). After this we randomly choose a subset of shingles for a concise image of the document [6, 8, and 9]. M.Henzinger [32] uses like this approach AltaVista search engine .There are several methods for selecting the shingles for the image: a fixed number of shingles, a logarithmic number of shingles, a linear number of shingle (every nth shingle), etc. In lexical methods, representative words are chosen according to their significance. Usually these values are based on frequencies. Those words whose frequencies are in an interval (except for stop- words from a special list

about 30 stop-words with articles, prepositions and 
pronouns) are taken. The words with high 
frequency can be non informative and words with low
frequencies can be misprints or occasional

words. 
In lexical methods, like I-Match [11], a large text 
corpus is used for generating the lexicon. The 
words that appear in the lexicon represent the docu
ment. When the lexicon is generated the words

with the lowest and highest frequencies are deleted
. I-Match generates a signature and a hash 
code of the document. If two documents get the same
hash code it is likely that the similarity

measures of these documents are equal as well. I-Ma

tch is sometimes instable to changes in texts [22]. Jun Fan et al. [16] introduced the idea of fusing algorithms (shingling, I-Match, simhash) and presented the experiments. The random lexicons based multi fingerprints generations are imported into shingling based simhash algorithm and named it "shingling based multi fingerprints simhash algorithm". The combination performance was much better than original Simhash.

 
The paper proposed the novel task for detecting and eliminating near duplicate and duplicate web pages to increase the efficiency of web crawling. So, the technique proposed aims at helping document classification in web content mining by eliminating the near-duplicate documents and in document clustering. For this, a novel Algorithm has been proposed to evaluate the similarity content of two ocuments.
 
 
Duplicate Detection (DD) Algorithm
Step 1: Consider the Stemmed keywords of the web page.
Step 2: Based on the starting character i.e. A-Z we here by assumed the hash values should start with1-26.
Step 3: Scan every word from the sample and compare with DB (data base) (initially DB Contains NO key values. Once the New keyword is found then generate respective hash value. Store that key value in temporary DB.
Step 4: Repeat the step 3 until all the keywords get completes.
Step 5: Store all Hash values for a given sample in local DB (i.e. here we used array list)
Step 6: Repeat step 1 to step 6 for N no. of samples.
Step 7: Once the selected samples were over then calculate similarity measure on the samples hash values which we stored in local DB with respective to webpages in repository.
Step 8: From similarity measure, we can generate a report on the samples in the score of %forms. Pages that are 80% similar are considered tobe near duplicates
 
我晕,貌似没有看到精髓啊!
 

A N EAR -D UPLICATE D ETECTION A LGORITHM T O F ACILITATE D OCUMENT C LUSTERING——有时间看看里面的相关研究的更多相关文章

  1. WLST 命令和变量

    下列部分将详细描述 WLST 命令和变量.主题包括:  WSLT 命令类别概述  浏览命令  控制命令  部署命令  诊断命令  编辑命令  信息命令  生命周期命令  节点管理器命令  树命令  W ...

  2. Asterisk重要App

    elastix82*CLI> core show application  SoftHangup -= Info about application 'SoftHangup' =- [Synop ...

  3. Java虚拟机系列——检视阅读

    Java虚拟机系列--检视阅读 参考 java虚拟机系列 入门掌握JVM所有知识点 2020重新出发,JAVA高级,JVM JVM基础系列 从 0 开始带你成为JVM实战高手 Java虚拟机-垃圾收集 ...

  4. 基于Java的打包jar、war、ear包的作用与区别详解

      本篇文章,小编为大家介绍,基于Java的打包jar.war.ear包的作用与区别详解.需要的朋友参考下   以最终客户的角度来看,JAR文件就是一种封装,他们不需要知道jar文件中有多少个.cla ...

  5. 关于war包 jar包 ear包 及打包方法

    关于war包 jar包 ear包 及打包方法 war包:是做好一个web应用后,通常是网站打成包部署到容器中 jar包:通常是开发的时候要引用的通用类,打成包便于存放管理. ear包:企业级应用 通常 ...

  6. what is a ear

    http://docs.oracle.com/javaee/6/tutorial/doc/bnaby.html An EAR file (see Figure 1-6) contains Java E ...

  7. 【转】 JAR、WAR、EAR的使用和区别

    Jar.war.EAR.在文件结构上,三者并没有什么不同,它们都采用zip或jar档案文件压缩格式.但是它们的使用目的有所区别: Jar文件(扩展名为. Jar,Java Application Ar ...

  8. 使用JAR命令打EAR包

    恩,我又得了一个发布应用的活,常常使用JAR命令来打EAR包,所以下面记录一下,以免忘记! 前提条件如下: 1)我的WEB服务器是WebLogic Server (版本是: 10.3.6.0) 2)假 ...

  9. Oracle11g安装出现em.ear

    在windows 7下安装Oracle 11g R2 时大概安装到45%时 提示找不到em.ear文件,如果点击继续还会出现其他错误,最后安装不成功. 检查文件发现另外一个zip没有解压 解压第二个压 ...

随机推荐

  1. 使用3DES+Base64来加密传输iOS应用数据

    本文转载至 http://www.erblah.com/post/objective-c/shi-yong-3des-base64lai-jia-mi-chuan-shu-iosying-yong-s ...

  2. 【iOS开发-80】Quartz2D绘图简介:直线/圆形/椭圆/方形以及上下文栈管理CGContextSaveGState/CGContextRestoreGState

    本文转载至 http://blog.csdn.net/weisubao/article/details/41282457 - (void)drawRect:(CGRect)rect { //获得当前上 ...

  3. Linux命令提示符的配置

    Linux登录过程中加载配置文件顺序: /etc/profile → /etc/profile.d/*.sh → ~/.bash_profile → ~/.bashrc → [/etc/bashrc] ...

  4. Linux 服务器配置JDK

    1. 查看java版本 [root@plttestap5 ~]# java -versionjava version "1.8.0_121"Java(TM) SE Runtime ...

  5. HBase核心技术点

    表的rowkey设计核心思想: 依据rowkey查询最快 对rowkey进行范围查询range 前缀匹配 预分区创建的三种方式 create 'ns1:t1', 'f1', SPLITS => ...

  6. zip filter map 列表生成器

    map map(function, list): 就是对list 中的每一个元素都调用function函数进行处理,返回一个map的对象 list一下就可以生成一个列表 或者for循环该对象就可以输出 ...

  7. Linux安装Nignx基于域名的多虚拟主机实战

    看这个文章之前,要保证你的Nginx已经安装成功! 如果没有,请移步到下面这个文章,看完后再回来看! https://www.cnblogs.com/apollo1616/p/10214531.htm ...

  8. Cocos2d-x 3.1 环境搭建和创建project

    Cocos2d-x 3.x改版了非常多,之前搭过一次环境,可是没截图.这次趁着重装电脑,一边搭建一边截图.此博文仅仅是为了记录而不是为了教学,所以很多其它讲的是搭建过程.本文基本上參考这篇博客:htt ...

  9. Android JSON And Object Cast

    Ref:JSON字符串转换成Java实体类(POJO) Ref:Java.Json转换方式之二:Jackson Ref:Jackson 框架,轻易转换JSON Ref:几种序列化协议(protobuf ...

  10. RZ11 系统配置参数

    SAP系统配置参数详解[转] SAP 系统参数设置 path: /usr/sap/PRD/SYS/profile profile: PRD_DVEBMGS00_sapapp 如果您想查看所有的参数及当 ...