摘自:http://aircconline.com/ijdkp/V4N6/4614ijdkp04.pdf

In the syntactical approach we define binary attributes that correspond to each fixed length substring of words (or characters). These substrings are a framework for near-duplicate detection called shingles. We can say that a shingle is a sequence of words. A shingle has two parameters: the length and the offset. The length of the shingle is the number of the words in a shingle and the
offset is the distance between the beginnings of the shingles. We assign a hash code to each shingle, so equal shingles have the same hash code and it is improbable that different shingles
would have the same hash codes (this depends on the hashing algorithm we use). After this we randomly choose a subset of shingles for a concise image of the document [6, 8, and 9]. M.Henzinger [32] uses like this approach AltaVista search engine .There are several methods for selecting the shingles for the image: a fixed number of shingles, a logarithmic number of shingles, a linear number of shingle (every nth shingle), etc. In lexical methods, representative words are chosen according to their significance. Usually these values are based on frequencies. Those words whose frequencies are in an interval (except for stop- words from a special list

about 30 stop-words with articles, prepositions and 
pronouns) are taken. The words with high 
frequency can be non informative and words with low
frequencies can be misprints or occasional

words. 
In lexical methods, like I-Match [11], a large text 
corpus is used for generating the lexicon. The 
words that appear in the lexicon represent the docu
ment. When the lexicon is generated the words

with the lowest and highest frequencies are deleted
. I-Match generates a signature and a hash 
code of the document. If two documents get the same
hash code it is likely that the similarity

measures of these documents are equal as well. I-Ma

tch is sometimes instable to changes in texts [22]. Jun Fan et al. [16] introduced the idea of fusing algorithms (shingling, I-Match, simhash) and presented the experiments. The random lexicons based multi fingerprints generations are imported into shingling based simhash algorithm and named it "shingling based multi fingerprints simhash algorithm". The combination performance was much better than original Simhash.

 
The paper proposed the novel task for detecting and eliminating near duplicate and duplicate web pages to increase the efficiency of web crawling. So, the technique proposed aims at helping document classification in web content mining by eliminating the near-duplicate documents and in document clustering. For this, a novel Algorithm has been proposed to evaluate the similarity content of two ocuments.
 
 
Duplicate Detection (DD) Algorithm
Step 1: Consider the Stemmed keywords of the web page.
Step 2: Based on the starting character i.e. A-Z we here by assumed the hash values should start with1-26.
Step 3: Scan every word from the sample and compare with DB (data base) (initially DB Contains NO key values. Once the New keyword is found then generate respective hash value. Store that key value in temporary DB.
Step 4: Repeat the step 3 until all the keywords get completes.
Step 5: Store all Hash values for a given sample in local DB (i.e. here we used array list)
Step 6: Repeat step 1 to step 6 for N no. of samples.
Step 7: Once the selected samples were over then calculate similarity measure on the samples hash values which we stored in local DB with respective to webpages in repository.
Step 8: From similarity measure, we can generate a report on the samples in the score of %forms. Pages that are 80% similar are considered tobe near duplicates
 
我晕,貌似没有看到精髓啊!
 

A N EAR -D UPLICATE D ETECTION A LGORITHM T O F ACILITATE D OCUMENT C LUSTERING——有时间看看里面的相关研究的更多相关文章

  1. WLST 命令和变量

    下列部分将详细描述 WLST 命令和变量.主题包括:  WSLT 命令类别概述  浏览命令  控制命令  部署命令  诊断命令  编辑命令  信息命令  生命周期命令  节点管理器命令  树命令  W ...

  2. Asterisk重要App

    elastix82*CLI> core show application  SoftHangup -= Info about application 'SoftHangup' =- [Synop ...

  3. Java虚拟机系列——检视阅读

    Java虚拟机系列--检视阅读 参考 java虚拟机系列 入门掌握JVM所有知识点 2020重新出发,JAVA高级,JVM JVM基础系列 从 0 开始带你成为JVM实战高手 Java虚拟机-垃圾收集 ...

  4. 基于Java的打包jar、war、ear包的作用与区别详解

      本篇文章,小编为大家介绍,基于Java的打包jar.war.ear包的作用与区别详解.需要的朋友参考下   以最终客户的角度来看,JAR文件就是一种封装,他们不需要知道jar文件中有多少个.cla ...

  5. 关于war包 jar包 ear包 及打包方法

    关于war包 jar包 ear包 及打包方法 war包:是做好一个web应用后,通常是网站打成包部署到容器中 jar包:通常是开发的时候要引用的通用类,打成包便于存放管理. ear包:企业级应用 通常 ...

  6. what is a ear

    http://docs.oracle.com/javaee/6/tutorial/doc/bnaby.html An EAR file (see Figure 1-6) contains Java E ...

  7. 【转】 JAR、WAR、EAR的使用和区别

    Jar.war.EAR.在文件结构上,三者并没有什么不同,它们都采用zip或jar档案文件压缩格式.但是它们的使用目的有所区别: Jar文件(扩展名为. Jar,Java Application Ar ...

  8. 使用JAR命令打EAR包

    恩,我又得了一个发布应用的活,常常使用JAR命令来打EAR包,所以下面记录一下,以免忘记! 前提条件如下: 1)我的WEB服务器是WebLogic Server (版本是: 10.3.6.0) 2)假 ...

  9. Oracle11g安装出现em.ear

    在windows 7下安装Oracle 11g R2 时大概安装到45%时 提示找不到em.ear文件,如果点击继续还会出现其他错误,最后安装不成功. 检查文件发现另外一个zip没有解压 解压第二个压 ...

随机推荐

  1. dedecms增加自定义表单管理员

    打开\dede\inc\grouplist.txt 添加 >>自定义表单 >f_List>列出表单 >f_New>新建表单 >f_Edit>编辑表单 & ...

  2. 深入了解Erlang 垃圾回收机制以及其重要性(转)

    声明:本片文章是由Hackernews上的[Erlang Garbage Collection Details and Why ItMatters][1]编译而来,本着学习和研究的态度,进行的编译,转 ...

  3. PHP Memcached 面试题

    这里收集了经常被问到的关于memcached的问题 * memcached是怎么工作的? * memcached最大的优势是什么? * memcached和MySQL的query cache相比,有什 ...

  4. ubuntu14.04 desktop 32-bit kvm装windows xp

    经过这几天来的折腾,总算是在ubuntu14.04用kvm装上了xp, 看不少的的贴,也绕了不少的圈,总的来说,非常感谢CSDN上的"上善若水75",看着他写的一个分类" ...

  5. php字符串操作: 去掉UTF-16的空格

    $s = json_encode($s); $s = str_replace('\u00a0','',$s); $s = str_replace('\u3000','',$s); $s = str_r ...

  6. apache虚拟主机配置: 设置二级目录访问跳转

    <VirtualHost *:> DocumentRoot "d:/www/abc" ServerName www.abc.com Alias /course &quo ...

  7. 为system对象添加扩展方法

    ////扩展方法类:必须为非嵌套,非泛型的静态类 public static class DatetimeEx { //通过this声明扩展的类,这里给DateTime类扩展一个Show方法,只有一个 ...

  8. centos出现-bash: /usr/bin/php: 没有那个文件或目录解决方法

    造成这个的原因是因为找不到php的执行文件导致的,原先我是安装的php5.4,然后卸载了重新安装php7,导致php可执行文件没有放到$PATH中,可以在终端测试:php -v,如果报错bash: / ...

  9. Android环境搭建 NDK+ADT(免cywgin)

    JDK下载: 1下载地址  http://www.oracle.com/technetwork/java/javase/downloads/index.html 2配置环境变量 JAVA_HOME:创 ...

  10. [闲来无事,从头再来][C51篇]导读

    目       的:  通过学习C51,熟悉单片机,熟悉C语言,熟悉单片机系统的外部电路. 方       法:  通过看书和使用板子做实验来进行学习 参考资料: <新概念51单片机C语言教程& ...