self 同类分布

HYSBZ - 1799

给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数。Sample Input

10 19

Sample Output

3

Hint

【约束条件】1 ≤ a ≤ b ≤ 10^18

约束:一个数是它自己数位和的倍数,直接dp根本找不到状态,枚举数位和,因为总就162,然后问题就变成了一个数%mod=0,mod是枚举的,想想状态:dp[pos][sum][val],当前pos位上数位和是sum,val就是在算这个数%mod,(从高位算  *10+i),因为我们枚举的数要保证数位和等于mod,还要保证这个数是mod的倍数,很自然就能找到这些状态,显然对于每一个mod,val不能保证状态唯一,这是你要是想加一维dp[pos][sum][val][mod],记录每一个mod的状态(这里sum可以用减法,然而val不行,就只能加一维),那你就想太多了,这样是会超时的(因为状态太多,记忆化效果不好)。这里直接对每一个mod,memset一次就能ac。下面的代码还把limit的当做了状态,因为每次都要初始化,所以能这样,memset在多组外面是不能这样的,不过奇葩的,这代码,如果不把limit当状态,还是在!limit 条件下记录dp,提交一发,时间竟然更短了,可能是每次memset的关系!!!

                                                        ——引自wust_wenhao

#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=+,M=+;
ll a[N],dp[N][M][M][];
ll dfs(int pos,int sum,int val,int mod,bool limit){
if(sum-*pos>) return ;
//最坏的情况,这一位及后面的全部为9都不能达到0那就直接GG,这个剪枝不会影响ac
if(!pos) return !sum && !val;
if(dp[pos][sum][val][limit]!=-) return dp[pos][sum][val][limit];
int up=limit?a[pos]:;
ll ans=;
for(int i=;i<=up;i++){
if(sum-i<) break;
ans+=dfs(pos-,sum-i,(val*+i)%mod,mod,limit && i==a[pos]);
}
return dp[pos][sum][val][limit]=ans;
}
ll solve(ll x){
int pos=;ll ans=;
for(;x;x/=) a[++pos]=x%;
for(int i=;i<=pos*;i++){//上限就是每一位都是9
memset(dp,-,sizeof dp);
ans+=dfs(pos,i,,i,true);
}
return ans;
}
int main(){
for(ll a,b;~scanf("%lld%lld",&a,&b);){
printf("%lld\n",solve(b)-solve(a-));
}
return ;
}

HYSBZ - 1799 self 同类分布的更多相关文章

  1. [BZOJ 1799] self 同类分布

    Link: BZOJ 1799 传送门 Solution: 一句话的题目,看得爽,做得烦 一般这类和数位相关的都是数位$dp$吧 不过一开始还是感觉不太可做,毕竟每个数模数不同 但要发现,模数最高也只 ...

  2. bzoj 1799: [Ahoi2009]self 同类分布 数位dp

    1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Descripti ...

  3. [BZOJ1799][AHOI2009]同类分布(数位DP)

    1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec  Memory Limit: 64 MBSubmit: 1635  Solved: 728[Submit][S ...

  4. [Ahoi2009]self 同类分布

    1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec  Memory Limit: 64 MBSubmit: 2357  Solved: 1079[Submit][ ...

  5. BZOJ1799 self 同类分布 数位dp

    BZOJ1799self 同类分布 去博客园看该题解 题意 给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数. [约束条件]1 ≤ a ≤ b ≤ 10^18 题解 1.所有的位数之和&l ...

  6. 【BZOJ1799】[AHOI2009]同类分布(动态规划)

    [BZOJ1799][AHOI2009]同类分布(动态规划) 题面 BZOJ 洛谷 题解 很容易想到数位\(dp\),然而数字和整除原数似乎不好记录.没关系,直接枚举数字和就好了,这样子就可以把整除原 ...

  7. 洛谷 P4127 [AHOI2009]同类分布 解题报告

    P4127 [AHOI2009]同类分布 题目描述 给出两个数\(a,b\),求出\([a,b]\)中各位数字之和能整除原数的数的个数. 说明 对于所有的数据,\(1 ≤ a ≤ b ≤ 10^{18 ...

  8. P4127 [AHOI2009]同类分布

    P4127 [AHOI2009]同类分布 题解 好的,敲上数位DP  DFS板子 记录一下填的各位数字之和 sum ,然后记录一下原数 yuan 最后判断一下  yuan%sum==0 不就好啦??? ...

  9. BZOJ 1799 同类分布

    一开始没想出来..一看题解 我艹直接枚举数位的和啊.....怪不得给50s. 还是太蠢. #include<iostream> #include<cstdio> #includ ...

随机推荐

  1. 把e.printStackTrace的堆栈信息打印在log.error()中

    不要这样写: log.error(e);这样只是简单的记录下错误的类型,不能精确出错误出错在哪行 要写成:log.error(e.toString(),e);

  2. 新装系统(CentOS7.4)环境初始化配置笔记

    新装系统(CentOS7.4)环境初始化配置笔记 一.概述 设备详情: Dell R730 服务器 (四个网卡,一根网线插在第2个网卡上) CentOS 7.4 x64 最小安装环境 二.网络环境配置 ...

  3. 2017.4.18 慕课网-spring事务管理总结

    1.课程目标 事务回顾 spring中的事务管理的api spring中编程式事务管理 spring中声明式事务管理 2.事务回顾 2.1 事务的概念 事务是指逻辑上的一组操作,要么全成功,要么全失败 ...

  4. 固态硬盘(Solid State Drives)

    固态硬盘(Solid State Drives) 学习了:https://baike.baidu.com/item/%E5%9B%BA%E6%80%81%E7%A1%AC%E7%9B%98/45351 ...

  5. dubbo官网和帮助文档

    dubbo官网和帮助文档 https://github.com/apache/incubator-dubbo 内含帮助文档: http://dubbo.apache.org/books/dubbo-d ...

  6. storm - 经常使用命令

    1.提交Topologies 命令格式:storm jar [jar路径] [拓扑包名.拓扑类名][stormIP地址][stormport][拓扑名称][參数] eg: storm jar /hom ...

  7. Java Learning Path(四) 方法篇

    Java Learning Path(四) 方法篇 Java作为一门编程语言,最好的学习方法就是写代码.当你学习一个类以后,你就可以自己写个简单的例子程序来运行一下,看看有什么结果,然后再多调用几个类 ...

  8. IIS相关知识和经验的碎皮化记录

    1.IIS(Internet Information Services)网站本机可以访问,局域网其他机器无法访问 导致这个问题之一是防火墙规则,解决办法如下: 1)[开始]打开[控制面板],选择[WI ...

  9. python 读写 json文件

    json的优势: 1. 数据体积方面. JSON相对于XML来讲,数据的体积小,传递的速度更快些. 2. 传输速度方面. JSON的速度要远远快于XML 3. 数据格式 数据格式比较简单, 易于读写, ...

  10. 【最后的冲刺】android中excel表的导入和数据处理

    [最后的冲刺]android中excel表的导入和数据处理 ——学校课程的查询和修改 1.编写 The Class类把课程表courses.db当做一个实体类,hashcode和equals这两个类是 ...