self 同类分布

HYSBZ - 1799

给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数。Sample Input

10 19

Sample Output

3

Hint

【约束条件】1 ≤ a ≤ b ≤ 10^18

约束:一个数是它自己数位和的倍数,直接dp根本找不到状态,枚举数位和,因为总就162,然后问题就变成了一个数%mod=0,mod是枚举的,想想状态:dp[pos][sum][val],当前pos位上数位和是sum,val就是在算这个数%mod,(从高位算  *10+i),因为我们枚举的数要保证数位和等于mod,还要保证这个数是mod的倍数,很自然就能找到这些状态,显然对于每一个mod,val不能保证状态唯一,这是你要是想加一维dp[pos][sum][val][mod],记录每一个mod的状态(这里sum可以用减法,然而val不行,就只能加一维),那你就想太多了,这样是会超时的(因为状态太多,记忆化效果不好)。这里直接对每一个mod,memset一次就能ac。下面的代码还把limit的当做了状态,因为每次都要初始化,所以能这样,memset在多组外面是不能这样的,不过奇葩的,这代码,如果不把limit当状态,还是在!limit 条件下记录dp,提交一发,时间竟然更短了,可能是每次memset的关系!!!

                                                        ——引自wust_wenhao

#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=+,M=+;
ll a[N],dp[N][M][M][];
ll dfs(int pos,int sum,int val,int mod,bool limit){
if(sum-*pos>) return ;
//最坏的情况,这一位及后面的全部为9都不能达到0那就直接GG,这个剪枝不会影响ac
if(!pos) return !sum && !val;
if(dp[pos][sum][val][limit]!=-) return dp[pos][sum][val][limit];
int up=limit?a[pos]:;
ll ans=;
for(int i=;i<=up;i++){
if(sum-i<) break;
ans+=dfs(pos-,sum-i,(val*+i)%mod,mod,limit && i==a[pos]);
}
return dp[pos][sum][val][limit]=ans;
}
ll solve(ll x){
int pos=;ll ans=;
for(;x;x/=) a[++pos]=x%;
for(int i=;i<=pos*;i++){//上限就是每一位都是9
memset(dp,-,sizeof dp);
ans+=dfs(pos,i,,i,true);
}
return ans;
}
int main(){
for(ll a,b;~scanf("%lld%lld",&a,&b);){
printf("%lld\n",solve(b)-solve(a-));
}
return ;
}

HYSBZ - 1799 self 同类分布的更多相关文章

  1. [BZOJ 1799] self 同类分布

    Link: BZOJ 1799 传送门 Solution: 一句话的题目,看得爽,做得烦 一般这类和数位相关的都是数位$dp$吧 不过一开始还是感觉不太可做,毕竟每个数模数不同 但要发现,模数最高也只 ...

  2. bzoj 1799: [Ahoi2009]self 同类分布 数位dp

    1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Descripti ...

  3. [BZOJ1799][AHOI2009]同类分布(数位DP)

    1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec  Memory Limit: 64 MBSubmit: 1635  Solved: 728[Submit][S ...

  4. [Ahoi2009]self 同类分布

    1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec  Memory Limit: 64 MBSubmit: 2357  Solved: 1079[Submit][ ...

  5. BZOJ1799 self 同类分布 数位dp

    BZOJ1799self 同类分布 去博客园看该题解 题意 给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数. [约束条件]1 ≤ a ≤ b ≤ 10^18 题解 1.所有的位数之和&l ...

  6. 【BZOJ1799】[AHOI2009]同类分布(动态规划)

    [BZOJ1799][AHOI2009]同类分布(动态规划) 题面 BZOJ 洛谷 题解 很容易想到数位\(dp\),然而数字和整除原数似乎不好记录.没关系,直接枚举数字和就好了,这样子就可以把整除原 ...

  7. 洛谷 P4127 [AHOI2009]同类分布 解题报告

    P4127 [AHOI2009]同类分布 题目描述 给出两个数\(a,b\),求出\([a,b]\)中各位数字之和能整除原数的数的个数. 说明 对于所有的数据,\(1 ≤ a ≤ b ≤ 10^{18 ...

  8. P4127 [AHOI2009]同类分布

    P4127 [AHOI2009]同类分布 题解 好的,敲上数位DP  DFS板子 记录一下填的各位数字之和 sum ,然后记录一下原数 yuan 最后判断一下  yuan%sum==0 不就好啦??? ...

  9. BZOJ 1799 同类分布

    一开始没想出来..一看题解 我艹直接枚举数位的和啊.....怪不得给50s. 还是太蠢. #include<iostream> #include<cstdio> #includ ...

随机推荐

  1. python测试与调试提示

    测试与调试提示 2.1 在交互模式输入一个python语句就会执行一个.在调试程序时,这种模式尤其有用. 2.2 在一个文件调用python解释器后,解释器会在文件中的最后一个语句执行之后推出.然而, ...

  2. Linux学习之二-Linux系统的目录结构

    Linux学习之二-Linux系统的目录结构 在Linux的根目录下,有很多的目录,但是需要记住,对于Linux而言,一切皆文件.因此此处的目录也是文件.用ls / 命令就能看到根目录下的各类不同的目 ...

  3. 转: 理解UDDI (from IBM Dev)

    from: http://www.ibm.com/developerworks/cn/webservices/ws-featuddi/index.html 何为 UDDI? UDDI 项目鼓励 Web ...

  4. css3——position定位详解

    最近热衷于前端的开发,因为突然发现虽然对于网站.应用来说,功能处于绝对重要的地位,但是用户体验对于用户来讲同样是那么的重要,可以说是第一印象.最近在开发当中发现以前对于css中的position的理解 ...

  5. Layer 初始

    Layer 初始 介绍:很不错的一个弹出框解决方案 丰富多样的Web弹出层组件,可轻松实现Alert/Confirm/Prompt/普通提示/页面区块/iframe/tips等等几乎所有的弹出交互.目 ...

  6. 【BIEE】09_BIEE控制台乱码问题解决

    BIEE安装完成后,点击[启动BI服务] 接着从弹出窗口可以发现,全部汉字都是乱码 出现这种情况,想看一下BIEE启动情况是很费劲的,接着我们处理一下这个问题 1.从路径D:\obiee\user_p ...

  7. android中依据不同分辨率dp和px的相互转算

    public class PxAndDp { /** * 依据手机的分辨率从 dp 的单位 转成为 px(像素) */ public static int dip2px(Context context ...

  8. HDU4647:Another Graph Game(贪心)

    Problem Description Alice and Bob are playing a game on an undirected graph with n (n is even) nodes ...

  9. Git学习小结

    版本控制工具 集中式: CVS SVN 集大成者 分布式:git 创始人:inux Towards 2005年 工具 最好使用linux(oh-my-zsh) gitbash -> cygwin ...

  10. MYSQL总结之sql语句大全

    一.基础1.说明:创建数据库 CREATE DATABASE database-name .说明:删除数据库 drop database dbname .说明:备份sql server --- 创建 ...