ACM学习历程—BZOJ2956 模积和(数论)
Description
求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j。
Input
第一行两个数n,m。
Output
一个整数表示答案mod 19940417的值
Sample Input
3 4
Sample Output
1
样例说明
答案为(3 mod 1)*(4 mod 2)+(3 mod 1) * (4 mod 3)+(3 mod
1) * (4 mod 4) + (3 mod 2) * (4 mod 1) + (3 mod 2) * (4 mod 3) + (3 mod 2) * (4
mod 4) + (3 mod 3) * (4 mod 1) + (3 mod 3) * (4 mod 2) + (3 mod 3) * (4 mod 4)
= 1
数据规模和约定
对于100%的数据n,m<=10^9。
由题意:
∑∑((n mod i) * (m
mod j)) ( i≠j)= ∑(n mod i) * ∑(m mod i) - ∑((n mod i) * (m mod i))=
∑(n-[n/i]*i) * ∑(m-[m/i]*i) - ∑(nm-([n/i]+[m/i])i+[n/i][m/i]*i*i)= ∑(n-[n/i]*i)
* ∑(m-[m/i]*i) – n*n*m+∑[n/i]i+∑[m/i]i-∑[n/i][m/i]*i*i(n <= m)
然后利用[n/i]的分组加速运算即可,不过中间过程有多处需要注意的,
m/(m/i)的时候需要和n比较大小,因为可能会超出范围。
此外就是int乘法可能会爆,需要转long long,中间过程别忘了MOD。
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <set>
#include <map>
#include <queue>
#include <string>
#define LL long long
#define MOD 19940417
#define nsix 3323403 using namespace std; int n, m; LL cal(int len, int x)
{
LL ans = , tmp;
int j;
for (int i = ; i <= len; ++i)
{
j = min(len, x/(x/i));//这一句不用min,j会越界
tmp = ((LL)i+j)*(j-i+)/%MOD;
ans += tmp*(x/i)%MOD;
ans %= MOD;
i = j;
}
return ans;
} inline LL sum(LL x)
{
return x*(x+)%MOD*(*x+)%MOD*nsix%MOD;
} LL cal2(int x, int y)
{
LL ans = , tmp, ttmp;
int j;
for (int i = ; i <= x; ++i)
{
j = min(x/(x/i), y/(y/i));
//j = min(j, x);
tmp = sum(j)-sum(i-);
tmp = (tmp%MOD+MOD)%MOD;
ttmp = ((LL)x/i)*(y/i)%MOD;
ans += tmp*ttmp%MOD;
ans %= MOD;
i = j;
}
return ans;
} void work()
{
if (n > m) swap(n, m);
LL ans, m2, n2, snn, smm, snm, ss;
m2 = (LL)m*m%MOD;
n2 = (LL)n*n%MOD;
smm = cal(m, m);
snn = cal(n, n);
snm = cal(n, m);
ss = cal2(n, m);
ans = m2*n2%MOD - m2*snn%MOD - n2*smm%MOD + snn*smm%MOD;
ans -= m*n2%MOD;
ans += m*snn%MOD;
ans += n*snm%MOD;
ans -= ss;
ans = (ans%MOD+MOD)%MOD;
printf("%lld\n", ans);
} int main()
{
//freopen("test.in", "r", stdin);
while (scanf("%d%d", &n, &m) != EOF)
work();
return ;
}
ACM学习历程—BZOJ2956 模积和(数论)的更多相关文章
- ACM学习历程—HDU5667 Sequence(数论 && 矩阵乘法 && 快速幂)
http://acm.hdu.edu.cn/showproblem.php?pid=5667 这题的关键是处理指数,因为最后结果是a^t这种的,主要是如何计算t. 发现t是一个递推式,t(n) = c ...
- ACM学习历程—HDU5668 Circle(数论)
http://acm.hdu.edu.cn/showproblem.php?pid=5668 这题的话,假设每次报x个,那么可以模拟一遍, 假设第i个出局的是a[i],那么从第i-1个出局的人后,重新 ...
- ACM学习历程—HDU5666 Segment(数论)
http://acm.hdu.edu.cn/showproblem.php?pid=5666 这题的关键是q为质数,不妨设线段上点(x0, y0),则x0+y0=q. 那么直线方程则为y = y0/x ...
- ACM学习历程—HDU5585 Numbers(数论 || 大数)(BestCoder Round #64 (div.2) 1001)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5585 题目大意就是求大数是否能被2,3,5整除. 我直接上了Java大数,不过可以对末尾来判断2和5, ...
- BZOJ2956: 模积和(数论分块)
题意 题目链接 Sol 啊啊这题好恶心啊,推的时候一堆细节qwq \(a \% i = a - \frac{a}{i} * i\) 把所有的都展开,直接分块.关键是那个\(i \not= j\)的地方 ...
- ACM学习历程—HDU5637 Transform(数论 && 最短路)
题目链接:http://codeforces.com/problemset/problem/590/A 题目大意是给两种操作,然后给你一个s,一个t,求s至少需要多少次操作到t. 考虑到第一种操作是将 ...
- ACM学习历程—SNNUOJ1132 余数之和(数论)
Description F(n) = (n % 1) + (n % 2) + (n % 3) + ...... (n % n).其中%表示Mod,也就是余数.例如F(6) = 6 % 1 + 6 % ...
- ACM学习历程—HDU1719 Friend(数论)
Description Friend number are defined recursively as follows. (1) numbers 1 and 2 are friend number; ...
- 【bzoj2956】模积和 数论
题目描述 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. 输入 第一行两个数n,m. 输出 一个整数表示答案mod 1994041 ...
随机推荐
- js实现table内 某列的内容进行即时筛选
往往有些时候,我们把数据从数据库读取出来,显示到table里面,而此时来了个新需求,要在一个搜索框内输入关键字,表格的内容进行即时的筛选. 而即时触发进行数据库的查询,再回调显示,就显得慢,拖累服务器 ...
- python 基础 9.5 数据库连接池
一. 数据库连接池 python 编程中可以使用MySQLdb 进行数据库的连接及诸如查询,插入,更新等操作,但是每次连接mysql 数据库请求时,都是独立的去请求访问,相当浪费资源,而且访 ...
- openssl将私钥和crt证书合成pfx证书
pfx是什么文件:公钥加密技术12号标准(Public Key Cryptography Standards #12,PKCS#12)为存储和传输用户或服务器私钥.公钥和证书指定了一个可移植的格式.它 ...
- POJ 1694 An Old Stone Game【递归+排序】
链接: http://poj.org/problem?id=1694 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=27454#probl ...
- 优化tomcat启动速度
1.去掉不需要的jar包,这样tomcat在启动时就可以少加载jar包里面的class文件. 2.跳过一些与TLD files.注解.网络碎片无关的jar包,通过在conf/catalina.prop ...
- OC中第三方库MJExtension的使用
MJExtension是一套常用的"字典和模型之间互相转换"的框架,在项目中也使用过,现在记录一下.随着Swift的普及,在Swift中也有一个类似功能的框架HandyJSON 也 ...
- 洛谷 P1558 色板游戏
洛谷 题解里面好像都是压位什么的, 身为蒟蒻的我真的不会, 所以就来谈谈我的30颗线段树蠢方法吧! 这题初看没有头绪. 然后发现颜色范围好像只有30: 所以,我就想到一种\(sao\)操作,搞30颗线 ...
- hibernate 多对多 懒加载问题
报错:org.hibernate.LazyInitializationException: failed to lazily initialize a collection of role: net. ...
- GitHub提示 Error: Key already in use解决办法
GitHub提示 Error: Key already in use解决办法GitHub提示 Error: Key already in use解决办法2014年09月05日 ⁄ 综合 ⁄ 共 290 ...
- http请求(get 和 post 请求)与响应
版权声明:欢迎转载 https://blog.csdn.net/chenmoquan/article/details/36656101 一.http请求 http请求基本格式 ============ ...