Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 26782   Accepted: 9598

Description

Given a connected undirected graph, tell if its minimum spanning tree is unique.

Definition 1 (Spanning Tree): Consider a connected, undirected graph
G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'),
with the following properties:

1. V' = V.

2. T is connected and acyclic.

Definition 2 (Minimum Spanning Tree): Consider an edge-weighted,
connected, undirected graph G = (V, E). The minimum spanning tree T =
(V, E') of G is the spanning tree that has the smallest total cost. The
total cost of T means the sum of the weights on all the edges in E'.

Input

The
first line contains a single integer t (1 <= t <= 20), the number
of test cases. Each case represents a graph. It begins with a line
containing two integers n and m (1 <= n <= 100), the number of
nodes and edges. Each of the following m lines contains a triple (xi,
yi, wi), indicating that xi and yi are connected by an edge with weight =
wi. For any two nodes, there is at most one edge connecting them.

Output

For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

Sample Input

2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2

Sample Output

3
Not Unique!

Source

先跑一遍最小生成树,把树上边都记录下来。

然后枚举不使用其中一条边而再跑最小生成树,若答案没变,说明最小生成树不止一条。

注意数组大小←至少有十道题死在这个问题上了

用n估算的话5000最保险,实际上3000可AC

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int mxn=;
int n,m;
struct edge{
int x,y;
int v;
}e[mxn];
int tot;
int mst[mxn],cnt;
int cmp(const edge a,const edge b){
return a.v<b.v;
}
int fa[mxn];
void init(int x){
for(int i=;i<=x;i++)fa[i]=i;return;
}
int find(int x){
if(fa[x]==x)return x;
return fa[x]=find(fa[x]);
}
void Kruskal(){ init(n);
int i,j;
cnt=;
int ans1=;
tot=;
for(i=;i<=m;i++){
int x=find(e[i].x);int y=find(e[i].y);
if(x!=y){
fa[x]=y;
ans1+=e[i].v;
mst[++cnt]=i;
tot++;
}
if(tot==n-)break;
}
//
int ans2;
for(int k=;k<=cnt;k++){
tot=; ans2=;
init(n);
//init
for(i=;i<=m;i++){
if(i==mst[k])continue;
int x=find(e[i].x);int y=find(e[i].y);
if(x!=y){
fa[x]=y;
ans2+=e[i].v;
// mst[++cnt]=i;//!!这步不能加! 偷懒从上面复制的结果就是WA记录喜+1
tot++;
}
if((tot==n-) && ans1==ans2){
printf("Not Unique!\n");
return;
}
}
}
printf("%d\n",ans1);
return;
}
int main(){
int T;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
scanf("%d%d%d",&e[i].x,&e[i].y,&e[i].v);
sort(e+,e+m+,cmp);
Kruscal();
}
return ;
}

POJ1679 The Unique MST的更多相关文章

  1. POJ1679 The Unique MST[次小生成树]

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28673   Accepted: 10239 ...

  2. [poj1679]The Unique MST(最小生成树)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28207   Accepted: 10073 ...

  3. POJ1679 The Unique MST 【次小生成树】

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 20421   Accepted: 7183 D ...

  4. POJ1679 The Unique MST 2017-04-15 23:34 29人阅读 评论(0) 收藏

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 29902   Accepted: 10697 ...

  5. POJ1679 The Unique MST(Kruskal)(最小生成树的唯一性)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 27141   Accepted: 9712 D ...

  6. POJ1679 The Unique MST —— 次小生成树

    题目链接:http://poj.org/problem?id=1679 The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total S ...

  7. POJ-1679 The Unique MST,次小生成树模板题

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K       Description Given a connected undirec ...

  8. poj1679 The Unique MST(判定次小生成树)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 23180   Accepted: 8235 D ...

  9. POJ-1679.The Unique MST.(Prim求次小生成树)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 39561   Accepted: 14444 ...

  10. POJ1679 The Unique MST(次小生成树)

    可以依次枚举MST上的各条边并删去再求最小生成树,如果结果和第一次求的一样,那就是最小生成树不唯一. 用prim算法,时间复杂度O(n^3). #include<cstdio> #incl ...

随机推荐

  1. php图片压缩-高清晰度

    php高清晰度无损压缩 经常会用到把上传的大图片压缩,特别是体积,在微信等APP应用上,也默认都是有压缩的,那么,怎么样对图片大幅度压缩却仍能保持较高的清晰度呢? 压缩通常是有按比例缩放,和指定宽度压 ...

  2. php 图片操作类,支持生成缩略图,添加水印,上传缩略图

    <?php class Image {     //类开始     public $originimage = ""; //源图片文件地址     public $image ...

  3. JS简写

    本文来源于多年的 JavaScript 编码技术经验,适合所有正在使用 JavaScript 编程的开发人员阅读. 本文的目的在于帮助大家更加熟练的运用 JavaScript 语言来进行开发工作. 文 ...

  4. java实时监听日志写入kafka

    目的 实时监听某目录下的日志文件,如有新文件切换到新文件,并同步写入kafka,同时记录日志文件的行位置,以应对进程异常退出,能从上次的文件位置开始读取(考虑到效率,这里是每100条记一次,可调整) ...

  5. Spring---bean的实例化

    Spring IoC容器如何实例化Bean呢?传统应用程序可以通过new和反射方式进行实例化Bean.而Spring IoC 容器则需要根据Bean定义里的配置元数据使用反射机制来创建Bean.在Sp ...

  6. Quartus 11生成pof文件在AS烧写之后,程序无法启动

    1. 首先配置成AS,生成.pof文件,选择上面的图标Device 2. 选择Device and Pin Options... 3. 进入配置界面,选择如下 4. 进入下载界面,烧写.pof文件,开 ...

  7. TerminateProcess

    Remarks The TerminateProcess function is used to unconditionally cause a process to exit. The state ...

  8. PowerShell技巧:使用XPath语法查询XML文件

    [TechTarget中国原创] XML是存储结构化数据的一个很好的途径,但是想要让数据在其中发挥作用又会有些困难.每一种语言都有其特定方式来查询XML文件中的命名空间.元素及属性.PowerShel ...

  9. Jenkins拾遗--第四篇-适当的让构建失败

    问题的引出: 有一段我们的前端构建总会现git上分支名称中的版本号和工程里的版本号不一致的问题:这样会导致构一个问题:构建后的产品名称叫做1.1,但是进入app的关于页面,看到的版本还是1.0.这会让 ...

  10. Pascal数据结构与算法

    第一章 数据结构与算法的引入 1.1 数据结构的基本概念 一. 学习数据结构的意义 程序设计 = 数据结构 + 算法 目前,80%的待处理的数据具有“算法简单”(四则运算.检索.排序等),“对象复杂” ...