Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 26782   Accepted: 9598

Description

Given a connected undirected graph, tell if its minimum spanning tree is unique.

Definition 1 (Spanning Tree): Consider a connected, undirected graph
G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'),
with the following properties:

1. V' = V.

2. T is connected and acyclic.

Definition 2 (Minimum Spanning Tree): Consider an edge-weighted,
connected, undirected graph G = (V, E). The minimum spanning tree T =
(V, E') of G is the spanning tree that has the smallest total cost. The
total cost of T means the sum of the weights on all the edges in E'.

Input

The
first line contains a single integer t (1 <= t <= 20), the number
of test cases. Each case represents a graph. It begins with a line
containing two integers n and m (1 <= n <= 100), the number of
nodes and edges. Each of the following m lines contains a triple (xi,
yi, wi), indicating that xi and yi are connected by an edge with weight =
wi. For any two nodes, there is at most one edge connecting them.

Output

For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

Sample Input

2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2

Sample Output

3
Not Unique!

Source

先跑一遍最小生成树,把树上边都记录下来。

然后枚举不使用其中一条边而再跑最小生成树,若答案没变,说明最小生成树不止一条。

注意数组大小←至少有十道题死在这个问题上了

用n估算的话5000最保险,实际上3000可AC

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int mxn=;
int n,m;
struct edge{
int x,y;
int v;
}e[mxn];
int tot;
int mst[mxn],cnt;
int cmp(const edge a,const edge b){
return a.v<b.v;
}
int fa[mxn];
void init(int x){
for(int i=;i<=x;i++)fa[i]=i;return;
}
int find(int x){
if(fa[x]==x)return x;
return fa[x]=find(fa[x]);
}
void Kruskal(){ init(n);
int i,j;
cnt=;
int ans1=;
tot=;
for(i=;i<=m;i++){
int x=find(e[i].x);int y=find(e[i].y);
if(x!=y){
fa[x]=y;
ans1+=e[i].v;
mst[++cnt]=i;
tot++;
}
if(tot==n-)break;
}
//
int ans2;
for(int k=;k<=cnt;k++){
tot=; ans2=;
init(n);
//init
for(i=;i<=m;i++){
if(i==mst[k])continue;
int x=find(e[i].x);int y=find(e[i].y);
if(x!=y){
fa[x]=y;
ans2+=e[i].v;
// mst[++cnt]=i;//!!这步不能加! 偷懒从上面复制的结果就是WA记录喜+1
tot++;
}
if((tot==n-) && ans1==ans2){
printf("Not Unique!\n");
return;
}
}
}
printf("%d\n",ans1);
return;
}
int main(){
int T;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
scanf("%d%d%d",&e[i].x,&e[i].y,&e[i].v);
sort(e+,e+m+,cmp);
Kruscal();
}
return ;
}

POJ1679 The Unique MST的更多相关文章

  1. POJ1679 The Unique MST[次小生成树]

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28673   Accepted: 10239 ...

  2. [poj1679]The Unique MST(最小生成树)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28207   Accepted: 10073 ...

  3. POJ1679 The Unique MST 【次小生成树】

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 20421   Accepted: 7183 D ...

  4. POJ1679 The Unique MST 2017-04-15 23:34 29人阅读 评论(0) 收藏

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 29902   Accepted: 10697 ...

  5. POJ1679 The Unique MST(Kruskal)(最小生成树的唯一性)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 27141   Accepted: 9712 D ...

  6. POJ1679 The Unique MST —— 次小生成树

    题目链接:http://poj.org/problem?id=1679 The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total S ...

  7. POJ-1679 The Unique MST,次小生成树模板题

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K       Description Given a connected undirec ...

  8. poj1679 The Unique MST(判定次小生成树)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 23180   Accepted: 8235 D ...

  9. POJ-1679.The Unique MST.(Prim求次小生成树)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 39561   Accepted: 14444 ...

  10. POJ1679 The Unique MST(次小生成树)

    可以依次枚举MST上的各条边并删去再求最小生成树,如果结果和第一次求的一样,那就是最小生成树不唯一. 用prim算法,时间复杂度O(n^3). #include<cstdio> #incl ...

随机推荐

  1. C语言实例解析精粹学习笔记——26

    实例26:阿拉伯数字转换为罗马数字,将一个整数n(1~9999)转换为罗马数字,其中数字和罗马数字的对应关系如下: 原书中的开发环境很老,我也没有花心思去研究.自己在codeblocks中进行开发的, ...

  2. dategrip破解

    https://blog.csdn.net/weixin_39428938/article/details/81078806

  3. python Re库的介绍

    re库的贪婪匹配和最小匹配 后面跟着?变为最小匹配

  4. MySQL CONCAT()与GROUP_CONCAT()的使用

      1 . MySQL CONCAT(str1,str2, ...)  --返回连接的字符串 mysql> SELECT CONCAT('My', 'S', 'QL'); -> 'MySQ ...

  5. Android Studio的Log日志调试

    本人菜鸟一枚,极大发挥了搜索的功能.现记录一番,以备后患. 用断点真的很烦,因为之前写linux的时候,就是用最蠢但是也是挺有帮助的printf()来进行调试. 其实用Log输出日志的原理也是差不多的 ...

  6. cocos2d-x 3.0 导演,场景,层,精灵

    导演(Director) 一款游戏好比一部电影,只是游戏具有更强的交互性,不过它们的基本原理是一致的.所以在Cocos2dx中把统筹游戏大局的类抽象为导演(Director),Director是整个c ...

  7. 4525: [Cerc2012]Kingdoms

    4525: [Cerc2012]Kingdoms 题意 n个国家,两两之间可能存在欠债或者被欠债的关系,一个国家破产:其支出大于收入.问一个国家能否坚持到最后. 思路 很有意思的一道题. dp[s]表 ...

  8. echarts 地图的背景色和各省颜色配置以及地图饼图联动

    myChart.on(ecConfig.EVENT.MAP_SELECTED, function (param) { var selected = param.selected; var str = ...

  9. Java线程的两种实现形式

    一.创建线程的第一种方式:继承Thread类 class Demo extends Thread{ @Override public void run() { super.run(); for(int ...

  10. Nuget 异常引用记录

    事件描述 Nuget未能将packages.config中的dll成功引入项目中 解决办法 从Nuget中删除对NewtonSoft.Json的引用并重新对NewtonSoft.Json 4.5.0. ...