题目描述

对于任何正整数x,其约数的个数记作g(x)。例如g(1)=1、g(6)=4。

如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数。例如,整数1,2,4,6等都是反质数。

现在给定一个数N,你能求出不超过N的最大的反质数么?

输入输出格式

输入格式:

一个数N(1<=N<=2,000,000,000)。

输出格式:

不超过N的最大的反质数。

输入样例#1:

1000
输出样例#1:

840

这道题很明显要找到的是不大于n的约数数最多的数里面最小的
因为如果约数相同而另一个数比你小就不满足题意了
我们可以把一个数拆成一堆质因数的幂的和 S=2^x1+3^x2+...+p^xn(p仍旧为质数)
方案总数就是cnt=(x1+1)*(x2+1)*(x3+1)*…… 这个自己想想就知道了的
而我们只需要找前9个质数就好了因为前9个质数2*3*5*7*11*13*17*19*23*29=6,469,693,230>2,000,000,000
这样情况其实很少我们只需要来一次爆搜解决问题就好了哇
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
int num[]={,,,,,,,,,,,,};
int n,ans,mx;
void dfs(LL now,LL sum,int step){
if(now>mx) mx=now,ans=sum;
if(now==mx&&ans>sum) ans=sum;
for(int i=;i<=;i++){
if(sum*num[step]>n) break;
sum=sum*num[step];
dfs(now*(i+),sum,step+);
}
}
int main()
{
n=read();
ans=;
dfs(,,);
printf("%d\n",ans);
return ;
}

洛谷 P1463 [SDOI2005]反素数ant && codevs2912反素数的更多相关文章

  1. 洛谷 P1463 [SDOI2005]反素数ant

    P1463 [SDOI2005]反素数ant 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i< ...

  2. 【题解】洛谷P1463 [POI2002][HAOI2007] 反素数(约数个数公式+搜索)

    洛谷P1463:https://www.luogu.org/problemnew/show/P1463 思路 约数个数公式  ai为质因数分解的质数的指数 定理: 设m=2a1*3a2*...*pak ...

  3. 【BZOJ 1053】 1053: [HAOI2007]反素数ant (反素数)

    1053: [HAOI2007]反素数ant Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0&l ...

  4. 洛谷 1463[SDOI2005] 反素数ant

    题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4,6 ...

  5. 【洛谷P1463】反素数

    题目大意:给定 \(N < 2e9\),求不超过 N 的最大反素数. 题解: 引理1:不超过 2e9 的数的质因子分解中,最多有 10 个不同的质因子,且各个质因子的指数和不超过30. 引理2: ...

  6. 洛谷 P1463 [POI2002][HAOI2007]反素数

    题目链接 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1, ...

  7. 洛谷 P1463 [HAOI2007]反素数

    https://www.luogu.org/problemnew/show/P1463 注意到答案就是要求1-n中约数最多的那个数(约数个数相同的取较小的) 根据约数个数的公式,在约数个数相同的情况下 ...

  8. 洛谷P1463 反素数

    经典题了,很难想到这TM是搜索...... 题意:求[1, n]中约数最多的数中最小的. 解:我们有约数个数定理. 所以考虑通过枚举每个质因数个数来直接计算出约数个数. 然后就可以搜索了. 注意:若p ...

  9. 洛谷 P1463、POI2002、HAOI2007 反素数

    题意: 求最小的$x\in[1,N]$,使得$x$为$g(x)$最大的数 中最小的一个. 分析: 1.$x$不会有超过$10$个不同质因子.理由:$2 \times 3\times 5...\time ...

随机推荐

  1. JS常用数组方法及实例

    1.join(separator):将数组的元素组起一个字符串,以separator为分隔符 ,,,,]; var b = a.join("|"); //如果不用分隔符,默认逗号隔 ...

  2. <Docker学习>4. docker容器的使用

    简单的说, 容器是独立运行的一个或一组应用, 以及它们的运行态环境. 对应的, 虚拟机可以理解为模拟运行的一整套操作系统( 提供了运行态环境和其他系统环境) 和跑在上面的应用.容器的运行是基于镜像的. ...

  3. python之获取微信好友列表并保存文档中

    代码如下 from wxpy import * from pprint import pprint #登录微信 bot = Bot() my_friend = bot.friends() f = op ...

  4. awk命令例子详解

    awk -F: '{print "Number of dields: "NF}' passwd 字段分隔符设为冒号,所以每条记录的字段数变成7: awk  '{print &quo ...

  5. STM8 输出比较极性

    PWM输出的信号极性有两个选项决定,一个选项是PWM模式,另一个选项是输出极性控制位. 请看定时器的框图,PWM模式的选择决定OC1REF的极性, 例如当选择PWM1模式时,OC1REF信号是&quo ...

  6. 15.6,redis主从同步

    redis主从同步 原理:1. 从服务器向主服务器发送 SYNC 命令.2. 接到 SYNC 命令的主服务器会调用BGSAVE 命令,创建一个 RDB 文件,并使用缓冲区记录接下来执行的所有写命令.3 ...

  7. [Django]我的第一个网页,报错啦~(自己实现过程中遇到问题以及解决办法)

    环境配置: python :2.7.13 django:1.10.5 OS:Win7(64位)& Centos7 问题描述  解决办法   global name 'render' is no ...

  8. 利用插件对某些网页执行javascript代码

    说明 javascript在浏览器地址栏中可以运行,也可以按F12在控制台中运行,还可以写一个插件让javascript针对某些网页执行,可以使用chrome浏览器的Content scripts,C ...

  9. 《Cracking the Coding Interview》——第2章:链表——题目7

    2014-03-18 02:57 题目:检查链表是否是回文的,即是否中心对称. 解法:我的做法是将链表从中间对半拆成两条,然后把后半条反转,再与前半条对比.对比完了再将后半条反转了拼回去.这样不涉及额 ...

  10. Python——开篇之词

    我也断断续续的用Python挺长时间了.但是一直都没有系统的学习过Python.很多东西都是现用现学.这样感觉对Python的理解太浅,完完全全就是搬砖的. 因此,我专门找了一个比较完整的老男孩的Py ...