洛谷 P1463 [SDOI2005]反素数ant && codevs2912反素数
题目描述
对于任何正整数x,其约数的个数记作g(x)。例如g(1)=1、g(6)=4。
如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数。例如,整数1,2,4,6等都是反质数。
现在给定一个数N,你能求出不超过N的最大的反质数么?
输入输出格式
输入格式:
一个数N(1<=N<=2,000,000,000)。
输出格式:
不超过N的最大的反质数。
1000
840 这道题很明显要找到的是不大于n的约数数最多的数里面最小的
因为如果约数相同而另一个数比你小就不满足题意了
我们可以把一个数拆成一堆质因数的幂的和 S=2^x1+3^x2+...+p^xn(p仍旧为质数)
方案总数就是cnt=(x1+1)*(x2+1)*(x3+1)*…… 这个自己想想就知道了的
而我们只需要找前9个质数就好了因为前9个质数2*3*5*7*11*13*17*19*23*29=6,469,693,230>2,000,000,000
这样情况其实很少我们只需要来一次爆搜解决问题就好了哇
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
int num[]={,,,,,,,,,,,,};
int n,ans,mx;
void dfs(LL now,LL sum,int step){
if(now>mx) mx=now,ans=sum;
if(now==mx&&ans>sum) ans=sum;
for(int i=;i<=;i++){
if(sum*num[step]>n) break;
sum=sum*num[step];
dfs(now*(i+),sum,step+);
}
}
int main()
{
n=read();
ans=;
dfs(,,);
printf("%d\n",ans);
return ;
}
洛谷 P1463 [SDOI2005]反素数ant && codevs2912反素数的更多相关文章
- 洛谷 P1463 [SDOI2005]反素数ant
P1463 [SDOI2005]反素数ant 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i< ...
- 【题解】洛谷P1463 [POI2002][HAOI2007] 反素数(约数个数公式+搜索)
洛谷P1463:https://www.luogu.org/problemnew/show/P1463 思路 约数个数公式 ai为质因数分解的质数的指数 定理: 设m=2a1*3a2*...*pak ...
- 【BZOJ 1053】 1053: [HAOI2007]反素数ant (反素数)
1053: [HAOI2007]反素数ant Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0&l ...
- 洛谷 1463[SDOI2005] 反素数ant
题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4,6 ...
- 【洛谷P1463】反素数
题目大意:给定 \(N < 2e9\),求不超过 N 的最大反素数. 题解: 引理1:不超过 2e9 的数的质因子分解中,最多有 10 个不同的质因子,且各个质因子的指数和不超过30. 引理2: ...
- 洛谷 P1463 [POI2002][HAOI2007]反素数
题目链接 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1, ...
- 洛谷 P1463 [HAOI2007]反素数
https://www.luogu.org/problemnew/show/P1463 注意到答案就是要求1-n中约数最多的那个数(约数个数相同的取较小的) 根据约数个数的公式,在约数个数相同的情况下 ...
- 洛谷P1463 反素数
经典题了,很难想到这TM是搜索...... 题意:求[1, n]中约数最多的数中最小的. 解:我们有约数个数定理. 所以考虑通过枚举每个质因数个数来直接计算出约数个数. 然后就可以搜索了. 注意:若p ...
- 洛谷 P1463、POI2002、HAOI2007 反素数
题意: 求最小的$x\in[1,N]$,使得$x$为$g(x)$最大的数 中最小的一个. 分析: 1.$x$不会有超过$10$个不同质因子.理由:$2 \times 3\times 5...\time ...
随机推荐
- C语言函数篇(一)函数的组成
函数的组成: 函数名 输入参数 返回值 返回值 函数名 (输入参数){ 执行体 } 用指针保存函数: int func(int a, int b, char c){ } --> int (*fu ...
- c++ function和bind
bind 定义在头文件 functional 里 template<typename _Func, typename... _BoundArgs> inline typename _Bin ...
- 17,saltstack高效运维
salt介绍 saltstack是由thomas Hatch于2011年创建的一个开源项目,设计初衷是为了实现一个快速的远程执行系统. salt强大吗 系统管理员日常会进行大量的重复性操作,例如安 ...
- build dynamic libraries for iOS and load them at runtime
编译了libmt.dylib, 和 test 程序调用,均正常.在xcode中显示调用正常,隐式调用则出现问题. 提示 dyld: Library not loaded. 即使存在在/usr/lib/ ...
- 2018"百度之星"程序设计大赛 - 资格赛 - 题集
1001 $ 1 \leq m \leq 10 $ 像是状压的复杂度. 于是我们(用二进制)枚举留下的问题集合 然后把这个集合和问卷们的答案集合 $ & $ 一下 就可以只留下被选中的问题的答 ...
- linux 多播
1.概念 单播是用于两个主机之间传送数据,广播是一个主机对局域网内的所有主机发送数据.而多播,又称为组播,它是对一组特定的主机通信.将网络上同一类型 业务逻辑上分组,只和组内的成员通信,其它主机没有加 ...
- Spring mvc+hibernate+freemarker(实战)
Spring mvc+hibernate+freemarker(实战) 博客分类: Spring Spring mvchibernatefreemarkerwebjava 今天我为大家做了一个 sp ...
- Android学习记录(1)—Android中XML文件的序列化生成与解析
xml文件是非常常用的,在android中json和xml是非常常用的两种封装数据的形式,从服务器中获取数据也经常是这两种形式的,所以学会生成和解析xml和json是非常有用的,json相对来说是比较 ...
- Visual Studio 2017 的 JavaScript 调试功能的关闭
关闭方法其实很简单,Options => Debugging => General => Enable JavaScript debugging for ASP.NET (Chrom ...
- Python 爬虫-豆瓣读书
import requests from bs4 import BeautifulSoup def parse_html(num): headers = { 'User-Agent': 'Mozill ...