洛谷 P1463 [SDOI2005]反素数ant && codevs2912反素数
题目描述
对于任何正整数x,其约数的个数记作g(x)。例如g(1)=1、g(6)=4。
如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数。例如,整数1,2,4,6等都是反质数。
现在给定一个数N,你能求出不超过N的最大的反质数么?
输入输出格式
输入格式:
一个数N(1<=N<=2,000,000,000)。
输出格式:
不超过N的最大的反质数。
1000
840 这道题很明显要找到的是不大于n的约数数最多的数里面最小的
因为如果约数相同而另一个数比你小就不满足题意了
我们可以把一个数拆成一堆质因数的幂的和 S=2^x1+3^x2+...+p^xn(p仍旧为质数)
方案总数就是cnt=(x1+1)*(x2+1)*(x3+1)*…… 这个自己想想就知道了的
而我们只需要找前9个质数就好了因为前9个质数2*3*5*7*11*13*17*19*23*29=6,469,693,230>2,000,000,000
这样情况其实很少我们只需要来一次爆搜解决问题就好了哇
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
int num[]={,,,,,,,,,,,,};
int n,ans,mx;
void dfs(LL now,LL sum,int step){
if(now>mx) mx=now,ans=sum;
if(now==mx&&ans>sum) ans=sum;
for(int i=;i<=;i++){
if(sum*num[step]>n) break;
sum=sum*num[step];
dfs(now*(i+),sum,step+);
}
}
int main()
{
n=read();
ans=;
dfs(,,);
printf("%d\n",ans);
return ;
}
洛谷 P1463 [SDOI2005]反素数ant && codevs2912反素数的更多相关文章
- 洛谷 P1463 [SDOI2005]反素数ant
P1463 [SDOI2005]反素数ant 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i< ...
- 【题解】洛谷P1463 [POI2002][HAOI2007] 反素数(约数个数公式+搜索)
洛谷P1463:https://www.luogu.org/problemnew/show/P1463 思路 约数个数公式 ai为质因数分解的质数的指数 定理: 设m=2a1*3a2*...*pak ...
- 【BZOJ 1053】 1053: [HAOI2007]反素数ant (反素数)
1053: [HAOI2007]反素数ant Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0&l ...
- 洛谷 1463[SDOI2005] 反素数ant
题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4,6 ...
- 【洛谷P1463】反素数
题目大意:给定 \(N < 2e9\),求不超过 N 的最大反素数. 题解: 引理1:不超过 2e9 的数的质因子分解中,最多有 10 个不同的质因子,且各个质因子的指数和不超过30. 引理2: ...
- 洛谷 P1463 [POI2002][HAOI2007]反素数
题目链接 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1, ...
- 洛谷 P1463 [HAOI2007]反素数
https://www.luogu.org/problemnew/show/P1463 注意到答案就是要求1-n中约数最多的那个数(约数个数相同的取较小的) 根据约数个数的公式,在约数个数相同的情况下 ...
- 洛谷P1463 反素数
经典题了,很难想到这TM是搜索...... 题意:求[1, n]中约数最多的数中最小的. 解:我们有约数个数定理. 所以考虑通过枚举每个质因数个数来直接计算出约数个数. 然后就可以搜索了. 注意:若p ...
- 洛谷 P1463、POI2002、HAOI2007 反素数
题意: 求最小的$x\in[1,N]$,使得$x$为$g(x)$最大的数 中最小的一个. 分析: 1.$x$不会有超过$10$个不同质因子.理由:$2 \times 3\times 5...\time ...
随机推荐
- 从0开始学习 Git
1. 什么是Git? Git 是 Linux 发明者 Linus 开发的一款新时代的版本控制系统,那什么是版本控制系统呢?怎么理解?网上一大堆详细的介绍,但是大多枯燥乏味,对于新手也很难理解,这里我只 ...
- Python解压ZIP、RAR等常用压缩格式的方法
解压大杀器 首先祭出可以应对多种压缩包格式的python库:patool.如果平时只用基本的解压.打包等操作,也不想详细了解各种压缩格式对应的python库,patool应该是个不错的选择. pato ...
- Evevt Loop、任务队列、定时器等
上周五,一个朋友发给我一道面试题,代码如下: console.log(1); setTimeout(console.log(2), 0); Promise.resolve().then(res =&g ...
- 《Cracking the Coding Interview》——第18章:难题——题目8
2014-04-29 03:10 题目:给定一个长字符串S和一个词典T,进行多模式匹配,统计S中T单词出现的总个数. 解法:这是要考察面试者能不能写个AC自动机吗?对面试题来说太难了吧?我不会,所以只 ...
- 《Cracking the Coding Interview》——第12章:测试——题目2
2014-04-24 23:15 题目:你有一段程序,运行了十次每次都在不同的地方崩掉了.已知这段程序只用了标准C或C++库函数,请问有什么思路来找出问题所在. 解法:1. 时间戳每次都不同.2. 随 ...
- U盘的容量变小了怎么办?
之前买了个U盘,后来给朋友装系统弄成U盘启动盘了,就发现U盘容量变少了几百兆,原来是因为做U盘启动盘的时候,U盘启动盘制作软件都是把写入U盘的PE文件隐藏了,防止用户不小心删除文件. 所以说这些空间应 ...
- 。net可以点出属性,编译没问题,运行时就报错了。一笔记。
项目框架是这样的. 在 domain(你可以把它理解为你的bll) ,web 2个项目工程里面都引用了一个通过nuget管理程序包,比如 xxcommon.dll web 引用了 domain ,然后 ...
- 了解JavaScript核心精髓(三)
1.js判断对象是否存在属性. hasOwnProperty(‘property’) 判断原型属性是否存在. "property" in o; 判断原型属性和原型链属性是否存在 ...
- ironic baremetal node rescue/unrescue mode
环境ironic-api ironic-conductor,ironicclient均升级为Queens版本 官网说明API版本为1.38才支持rescue/unrescue,所以修改下openrc文 ...
- python爬取动态网页2,从JavaScript文件读取内容
import requests import json head = {"user-agent":"Mozilla/5.0 (Windows NT 6.1; WOW64) ...