bzoj 3309 DZY Loves Math 莫比乌斯反演
DZY Loves Math
Time Limit: 20 Sec Memory Limit: 512 MB
Submit: 1303 Solved: 819
[Submit][Status][Discuss]
Description
对于正整数n,定义f(n)为n所含质因子的最大幂指数。例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0。
给定正整数a,b,求sigma(sigma(f(gcd(i,j)))) (i=1..a, j=1..b)。
Input
第一行一个数T,表示询问数。
接下来T行,每行两个数a,b,表示一个询问。
Output
对于每一个询问,输出一行一个非负整数作为回答。
Sample Input
7558588 9653114
6514903 4451211
7425644 1189442
6335198 4957
Sample Output
14225956593420
4332838845846
15400094813
HINT
【数据规模】
T<=10000
#pragma GCC optimize(2)
#pragma G++ optimzie(2)
#include<cstring>
#include<cmath>
#include<cstdio>
#include<algorithm>
#include<iostream> #define N 10000007
#define ll long long
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,m;
int pri[N],tot;
int t[N],last[N],g[N];
bool flag[N]; void init()
{
for (int i=;i<N;i++)
{
if(!flag[i])
{
pri[++tot]=i;
last[i]=t[i]=g[i]=;
}
for(int j=;pri[j]*i<N&&j<=tot;j++)
{
int x=i*pri[j];flag[x]=true;
if(i%pri[j]==)
{
last[x]=last[i];
t[x]=t[i]+;
if(last[x]==)g[x]=;
else g[x]=(t[last[x]]==t[x]?-g[last[x]]:);
break;
}
else
{
last[x]=i;
t[x]=;
g[x]=(t[i]==?-g[i]:);
}
}
}
for (int i=;i<N;i++)g[i]+=g[i-];
/* for (int i=11;i<=20;i++)
cout<<"xzpxzpxzpxzpxzpxzp==laji="<<g[i]<<endl;*/
}
ll solve(int n,int m)
{
if(n>m)swap(n,m);ll res=;
for (int i=,last;i<=n;i=last+)
{
last=min(n/(n/i),m/(m/i));
res+=1ll*(n/i)*(m/i)*(g[last]-g[i-]);
}
return res;
}
int main()
{
init();
int T=read();
while(T--)
{
n=read(),m=read();
printf("%lld\n",solve(n,m));
}
}
bzoj 3309 DZY Loves Math 莫比乌斯反演的更多相关文章
- BZOJ 3309 DZY Loves Math ——莫比乌斯反演
枚举$d=gcd(i,j)$ 然后大力反演 ——来自Popoqqq的博客. 然后大力讨论后面的函数的意义即可. http://blog.csdn.net/popoqqq/article/details ...
- bzoj 3309 DZY Loves Math —— 莫比乌斯反演+数论分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3309 凭着上课所讲和与 Narh 讨论推出式子来: 竟然是第一次写数论分块!所以迷惑了半天: ...
- BZOJ 3309: DZY Loves Math [莫比乌斯反演 线性筛]
题意:\(f(n)\)为n的质因子分解中的最大幂指数,求\(\sum_{i=1}^n \sum_{j=1}^m f(gcd(i,j))\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d| ...
- BZOJ 3309: DZY Loves Math 莫比乌斯反演+打表
有一个神奇的技巧——打表 code: #include <bits/stdc++.h> #define N 10000007 #define ll long long #define se ...
- 【BZOJ】3309: DZY Loves Math 莫比乌斯反演优化
3309: DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007) ...
- ●BZOJ 3309 DZY Loves Math
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3309 题解: 莫比乌斯反演,线筛 化一化式子: f(x)表示x的质因子分解中的最大幂指数 $ ...
- BZOJ 3309: DZY Loves Math
3309: DZY Loves Math Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 761 Solved: 401[Submit][Status ...
- 【BZOJ3309】DZY Loves Math 莫比乌斯反演+线性筛(好题)
[BZOJ3309]DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10 ...
- 【BZOJ3309】DZY Loves Math - 莫比乌斯反演
题意: 对于正整数n,定义$f(n)$为$n$所含质因子的最大幂指数.例如$f(1960)=f(2^3 * 5^1 * 7^2)=3$,$f(10007)=1$,$f(1)=0$. 给定正整数$a,b ...
随机推荐
- oracle中的预定异常和自定义异常
预定异常 oracle中的预定异常情况大约有24个,对于这种异常情况的处理,无须再程序中定义,可用oracle自动引发,常见的预定异常如下 异常 说明 ACCESS_INTO_NULL 在未初始化对象 ...
- PHP siege 压测 QPS大小
1.使用 PHP-FPM SOCKET的形式通讯 2.配置 PHP-FPM配置 [root@bogon php-fpm.d]# ls -al 总用量 drwxr-xr-x. root root 8月 ...
- 【c学习-5】
int main(){ //二维数组的应用 int i,j; int a[2][3]; for(i=0;i void myFunction(){ int a[3]; int i; int max; f ...
- 解决方法:SQL Server 检测到基于一致性的逻辑 I/O 错误 校验和不正(转载)
引用:http://luowei1371984.blog.163.com/blog/static/44041589201491844323885/ SQL2008运行select count(*) f ...
- Git 基本命令与服务器搭建
Git教程 一套视频 详细教程 完全命令手册 Git常用命令 git config:配置相关信息 git clone:复制仓库 git init:初始化仓库 git add:添加更新内容到索引中 gi ...
- 1016-02-首页17-添加转发微博控件-计算转发配图的 Frame-------打印出 被转发微博的模型
说明:HWStatus为微博模型,_retweeted_status 为返回的数据( 一条微博模型)里面的一个属性,_retweeted_status 不为空表示此微博是否转发了其他微博._retwe ...
- Linux YUM (Yellowdog Updater, Modified) Commands for Package Management
Linux YUM (Yellowdog Updater, Modified) Commands for Package Management In this article, we will lea ...
- Codeforces Round #482 (Div. 2) :C - Kuro and Walking Route
题目连接:http://codeforces.com/contest/979/problem/C 解题心得: 题意就是给你n个点,在点集中间有n-1条边(无重边),在行走的时候不能从x点走到y点,问你 ...
- 《Cracking the Coding Interview》——第14章:Java——题目6
2014-04-26 19:11 题目:设计一个循环数组,使其支持高效率的循环移位.并能够使用foreach的方式访问. 解法:foreach不太清楚,循环移位我倒是实现了一个,用带有偏移量的数组实现 ...
- 《Cracking the Coding Interview》——第1章:数组和字符串——题目8
2014-03-18 02:12 题目:判断一个字符串是否由另一个字符串循环移位而成. 解法:首先长度必须相等.然后将第一个串连拼两次,判断第二个串是否在这个连接串中. 代码: // 1.8 Assu ...