DZY Loves Math

Time Limit: 20 Sec  Memory Limit: 512 MB
Submit: 1303  Solved: 819
[Submit][Status][Discuss]

Description

对于正整数n,定义f(n)为n所含质因子的最大幂指数。例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0。
给定正整数a,b,求sigma(sigma(f(gcd(i,j)))) (i=1..a, j=1..b)。

Input

第一行一个数T,表示询问数。
接下来T行,每行两个数a,b,表示一个询问。

Output

对于每一个询问,输出一行一个非负整数作为回答。

Sample Input

4
7558588 9653114
6514903 4451211
7425644 1189442
6335198 4957

Sample Output

35793453939901
14225956593420
4332838845846
15400094813

HINT

【数据规模】

T<=10000

 #pragma GCC optimize(2)
#pragma G++ optimzie(2)
#include<cstring>
#include<cmath>
#include<cstdio>
#include<algorithm>
#include<iostream> #define N 10000007
#define ll long long
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,m;
int pri[N],tot;
int t[N],last[N],g[N];
bool flag[N]; void init()
{
for (int i=;i<N;i++)
{
if(!flag[i])
{
pri[++tot]=i;
last[i]=t[i]=g[i]=;
}
for(int j=;pri[j]*i<N&&j<=tot;j++)
{
int x=i*pri[j];flag[x]=true;
if(i%pri[j]==)
{
last[x]=last[i];
t[x]=t[i]+;
if(last[x]==)g[x]=;
else g[x]=(t[last[x]]==t[x]?-g[last[x]]:);
break;
}
else
{
last[x]=i;
t[x]=;
g[x]=(t[i]==?-g[i]:);
}
}
}
for (int i=;i<N;i++)g[i]+=g[i-];
/* for (int i=11;i<=20;i++)
cout<<"xzpxzpxzpxzpxzpxzp==laji="<<g[i]<<endl;*/
}
ll solve(int n,int m)
{
if(n>m)swap(n,m);ll res=;
for (int i=,last;i<=n;i=last+)
{
last=min(n/(n/i),m/(m/i));
res+=1ll*(n/i)*(m/i)*(g[last]-g[i-]);
}
return res;
}
int main()
{
init();
int T=read();
while(T--)
{
n=read(),m=read();
printf("%lld\n",solve(n,m));
}
}

bzoj 3309 DZY Loves Math 莫比乌斯反演的更多相关文章

  1. BZOJ 3309 DZY Loves Math ——莫比乌斯反演

    枚举$d=gcd(i,j)$ 然后大力反演 ——来自Popoqqq的博客. 然后大力讨论后面的函数的意义即可. http://blog.csdn.net/popoqqq/article/details ...

  2. bzoj 3309 DZY Loves Math —— 莫比乌斯反演+数论分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3309 凭着上课所讲和与 Narh 讨论推出式子来: 竟然是第一次写数论分块!所以迷惑了半天: ...

  3. BZOJ 3309: DZY Loves Math [莫比乌斯反演 线性筛]

    题意:\(f(n)\)为n的质因子分解中的最大幂指数,求\(\sum_{i=1}^n \sum_{j=1}^m f(gcd(i,j))\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d| ...

  4. BZOJ 3309: DZY Loves Math 莫比乌斯反演+打表

    有一个神奇的技巧——打表 code: #include <bits/stdc++.h> #define N 10000007 #define ll long long #define se ...

  5. 【BZOJ】3309: DZY Loves Math 莫比乌斯反演优化

    3309: DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007) ...

  6. ●BZOJ 3309 DZY Loves Math

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3309 题解: 莫比乌斯反演,线筛 化一化式子: f(x)表示x的质因子分解中的最大幂指数 $ ...

  7. BZOJ 3309: DZY Loves Math

    3309: DZY Loves Math Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 761  Solved: 401[Submit][Status ...

  8. 【BZOJ3309】DZY Loves Math 莫比乌斯反演+线性筛(好题)

    [BZOJ3309]DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10 ...

  9. 【BZOJ3309】DZY Loves Math - 莫比乌斯反演

    题意: 对于正整数n,定义$f(n)$为$n$所含质因子的最大幂指数.例如$f(1960)=f(2^3 * 5^1 * 7^2)=3$,$f(10007)=1$,$f(1)=0$. 给定正整数$a,b ...

随机推荐

  1. oracle中的预定异常和自定义异常

    预定异常 oracle中的预定异常情况大约有24个,对于这种异常情况的处理,无须再程序中定义,可用oracle自动引发,常见的预定异常如下 异常 说明 ACCESS_INTO_NULL 在未初始化对象 ...

  2. PHP siege 压测 QPS大小

    1.使用 PHP-FPM SOCKET的形式通讯 2.配置 PHP-FPM配置 [root@bogon php-fpm.d]# ls -al 总用量 drwxr-xr-x. root root 8月 ...

  3. 【c学习-5】

    int main(){ //二维数组的应用 int i,j; int a[2][3]; for(i=0;i void myFunction(){ int a[3]; int i; int max; f ...

  4. 解决方法:SQL Server 检测到基于一致性的逻辑 I/O 错误 校验和不正(转载)

    引用:http://luowei1371984.blog.163.com/blog/static/44041589201491844323885/ SQL2008运行select count(*) f ...

  5. Git 基本命令与服务器搭建

    Git教程 一套视频 详细教程 完全命令手册 Git常用命令 git config:配置相关信息 git clone:复制仓库 git init:初始化仓库 git add:添加更新内容到索引中 gi ...

  6. 1016-02-首页17-添加转发微博控件-计算转发配图的 Frame-------打印出 被转发微博的模型

    说明:HWStatus为微博模型,_retweeted_status 为返回的数据( 一条微博模型)里面的一个属性,_retweeted_status 不为空表示此微博是否转发了其他微博._retwe ...

  7. Linux YUM (Yellowdog Updater, Modified) Commands for Package Management

    Linux YUM (Yellowdog Updater, Modified) Commands for Package Management In this article, we will lea ...

  8. Codeforces Round #482 (Div. 2) :C - Kuro and Walking Route

    题目连接:http://codeforces.com/contest/979/problem/C 解题心得: 题意就是给你n个点,在点集中间有n-1条边(无重边),在行走的时候不能从x点走到y点,问你 ...

  9. 《Cracking the Coding Interview》——第14章:Java——题目6

    2014-04-26 19:11 题目:设计一个循环数组,使其支持高效率的循环移位.并能够使用foreach的方式访问. 解法:foreach不太清楚,循环移位我倒是实现了一个,用带有偏移量的数组实现 ...

  10. 《Cracking the Coding Interview》——第1章:数组和字符串——题目8

    2014-03-18 02:12 题目:判断一个字符串是否由另一个字符串循环移位而成. 解法:首先长度必须相等.然后将第一个串连拼两次,判断第二个串是否在这个连接串中. 代码: // 1.8 Assu ...