hdu_4944_FSF’s game
In this game, players need to divide a rectangle into several same squares.
The length and width of rectangles are integer, and of course the side length of squares are integer.
After division, players can get some coins.
If players successfully divide a AxB rectangle(length: A, width: B) into KxK squares(side length: K), they can get A*B/ gcd(A/K,B/K) gold coins.
In a level, you can’t get coins twice with same method.
(For example, You can get 6 coins from 2x2(A=2,B=2) rectangle. When K=1, A*B/gcd(A/K,B/K)=2; When K=2, A*B/gcd(A/K,B/K)=4; 2+4=6; )
There are N*(N+1)/2 levels in this game, and every level is an unique rectangle. (1x1 , 2x1, 2x2, 3x1, ..., Nx(N-1), NxN)
FSF has played this game for a long time, and he finally gets all the coins in the game.
Unfortunately ,he uses an UNSIGNED 32-BIT INTEGER variable to count the number of coins.
This variable may overflow.
We want to know what the variable will be.
(In other words, the number of coins mod 2^32)
InputThere are multiply test cases.
The first line contains an integer T(T<=500000), the number of test cases
Each of the next T lines contain an integer N(N<=500000).OutputOutput a single line for each test case.
For each test case, you should output "Case #C: ". first, where C indicates the case number and counts from 1.
Then output the answer, the value of that UNSIGNED 32-BIT INTEGER variable.Sample Input
3
1
3
100
Sample Output
Case #1: 1
Case #2: 30
Case #3: 15662489
HinIn the second test case, there are six levels(1x1,1x2,1x3,2x2,2x3,3x3)Here is the details for this game:
1x1: 1(K=1); 1x2: 2(K=1); 1x3: 3(K=1); 2x2: 2(K=1), 4(K=2); 2x3: 6(K=1); 3x3: 3(K=1), 9(K=3);
1+2+3+2+4+6+3+9=30
网上题解坑人,本来有点清楚了看了一会还把自己看懵了。重新理顺一下
根据题意写出式子,ans[n]=ans[n-1]+∑ n*i*k/gcd(n,i)
∑ n*i*k/gcd(n,i) //gcd(n,i)/k 为n的因子,
=n∗(1/a1+2/a2+⋯+n/an) //gcd(n,i)/k =ai,ai为n的因子 也就是说每个n的值对应了n的所有因子的贡献值之和。
比如n=2,因子1,2.
1的贡献 2 4
2的贡献 2
设mi为ai的因子 ∑ n*i*k/gcd(n,i)=n*[(1*m1/m1+2*m1/m1+...n/m1) +(1*m2/m2+2*m2/m2+...n/m2) +........+(1*mn/mn+2*mn/mn+...n/m)] //主要想清楚k/gcd()的值,k的变化对应mi的值
设sum(mi)=(1*mi/mi+2*mi/mi+...n/mi)=(n/m)*(n/m+1)/2
ans[n]=ans[n-1]+sum(mi)*mi
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
typedef long long LL;
#include<algorithm>
using namespace std;
#define N 500005
const LL mod=1LL<<32;
LL ans[N];
LL num[N];
int main()
{
//freopen("i.txt","r",stdin);
//freopen("o.txt","w",stdout);
for(int i=1;i<N;i++)
{
for(LL j=i;j<N;j+=i)
{
num[j]+=(j/i)*(j/i+1)/2;
//cout<<j<<" "<<num[j]<<endl;
}
}
ans[1]=1;
for(LL i=2;i<=500000;i++)
{
ans[i]=ans[i-1]+num[i]*i%mod;
ans[i]%=mod;
//cout<<ans[i]<<endl;
}
int t;
scanf("%d",&t);
for(int l=1;l<=t;l++)
{
int n;
scanf("%d",&n);
cout<<"Case #"<<l<<": "<<ans[n]<<endl; }
}
hdu_4944_FSF’s game的更多相关文章
随机推荐
- Unity3D跨平台动态库编译---记kcp基于CMake的各平台构建实践
一 为什么需要动态库 1)提供原生代码(native code)的支持,也叫原生插件,但是我实践的是c/cpp跨平台动态库,这里不具体涉及安卓平台java库和ios平台的objectc库构建. 2)某 ...
- java多线程异常捕获
java多线程中出现了异常,如何捕获.利用UncaughtExceptionHandler这个接口就可以了. 代码如下: package com.ming.thread.six.threadcreat ...
- Golang笔记(一)简洁的语言风格
Golang笔记(一)简洁的语言风格 概述 Golang继承了很多C语言的风格,寡人使用了十几年C语言,切换到Golang时上手很快,并且随着深入的使用,越来越喜欢这门语言.Golang最直观的感受是 ...
- schema的元素数据类型(复杂数据类型)
1.简单元素的声明 <xs:element name="元素名称" type="xs:string" default="默认值" mi ...
- $.ajax、$.post
jQuery.post( url, [data], [callback], [type] ) :使用POST方式来进行异步请求 参数: url (String) : 发送请求的URL地址. data ...
- 反向代理总结-reverse-proxy-with-url-rewrite
iis 反向代理 : 1. 微软文档 https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/reverse-proxy- ...
- spring boot Configuration Annotation Proessor not found in classpath
出现spring boot Configuration Annotation Proessor not found in classpath的提示是在用了@ConfigurationPropertie ...
- Chromium源码系列一:Chromium简介及源代码获取和编译
Chromium源码系列一:Chromium简介及源代码获取和编译 Chromium简介 Chromium是一个由Google主导开发的网页浏览器,以BSD许可证等多重自由版权发行并开放源代码.C ...
- java使用poi读取ppt文件
package msoffice; import java.io.File; import java.io.FileInputStream; import java.io.IOException; i ...
- 简单粗暴的更换固态硬盘及WIN10 Ubuntu双系统
简介:本文希望帮助如本人一样的计算机小白,能够以最快的速度更换固态硬盘及安装系统. 1.提前将准备空白U盘(至少8G),利用UltraISO工具,或者软媒魔方,制作U盘启动盘. PS:需提前下载好WI ...