link

求出1到N的阶乘中与M的阶乘互质的数的个数,对R取模,多组询问,R<=10^9+10,T<=10000,1 < = N , M < = 10000000

1到\(M!\)中与\(M!\)互质的数显然为\(\varphi(M)\),由于\(N!\)是\(M!\)的倍数,所以一共有\(\frac {N!}{M!}\)组数,每组数都有\(\varphi(M)\)个数字与\(M!\)互质,所以答案为\(\frac{N!}{M!}\varphi(M!)\)

根据\(\varphi\)的计算式,枚举\(M!\)所有素数计算即可,即1M的素数,显然可以预处理,设n=10000000,由于1n内素数为\(\frac{n}{\ln n}\)个,而每个素数由于需要计算逆元,需要时间为\(O(\log n)\),总复杂度为\(O(n)\),预处理阶乘每次询问直接乘即可,询问复杂度\(O(1)\),预处理复杂度\(O(n)\)

#include <cstdio>
using namespace std; bool vis[10000010];
int prime[10000010], tot, fuck = 10000000;
int prod[10000010], p;
int fac[10000010];
int qpow(int x, int y)
{
int res = 1;
for (x %= p; y > 0; y >>= 1, x = x * (long long)x % p) if (y & 1) res = res * (long long)x % p;
return res;
} int main()
{
int t; scanf("%d%d", &t, &p);
prod[1] = fac[1] = fac[0] = 1;
for (int i = 2; i <= fuck; i++)
{
if (vis[i] == false) prime[++tot] = i, prod[i] = (i - 1) * (long long)qpow(i, p - 2) % p;
else prod[i] = 1;
for (int j = 1; j <= tot && i * prime[j] <= fuck; j++)
{
vis[i * prime[j]] = true;
if (i % prime[j] == 0) break;
}
prod[i] = prod[i] * (long long)prod[i - 1] % p;
fac[i] = i * (long long)fac[i - 1] % p;
}
while (t --> 0)
{
int n, m;
scanf("%d%d", &n, &m);
printf("%d\n", (int)(fac[n] * (long long)prod[m] % p));
}
return 0;
}

38行一遍A

upd:观察了pinkrabbit的题解,发现这么写是错的,对于n>=r的情况,n中的因子r可能会和phi中的逆元消掉(phi中因子没有逆元的假象掩盖了事实)

解决方法类似扩展卢卡斯,记录成\(x*y^b\)的形式。不过感觉出题人不会弄成这么毒瘤,除了你谷的管理员加强数据,就不改了,长个记性就行。。。真相:由于懒癌

luogu2155 [SDOI2008]沙拉公主的困惑的更多相关文章

  1. Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2560  Solved: 857[Submit][St ...

  2. 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

  3. 洛咕 P2155 [SDOI2008]沙拉公主的困惑

    洛咕 P2155 [SDOI2008]沙拉公主的困惑 有个结论,就是如果\(gcd(a,b)=1\),那么\(gcd(a+kb,b)=1\).证明比较显然. 所以这个题目要问的\(n!\)就可以分成\ ...

  4. BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 6103  Solved: 2060[Submit][S ...

  5. BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 5003  Solved: 1725 [Submit] ...

  6. 【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

  7. 【bzoj2186】[Sdoi2008]沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 3303  Solved: 1129[Submit][S ...

  8. 【BZOJ2186】[Sdoi2008]沙拉公主的困惑 线性筛素数

    [BZOJ2186][Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M! ...

  9. 【bzoj2186】: [Sdoi2008]沙拉公主的困惑 数论-欧拉函数

    [bzoj2186]: [Sdoi2008]沙拉公主的困惑 考虑当 gcd(a,b)=1 则 gcd(nb+a,b)=1 所以[1,N!]与M!互质的个数就是 筛出[1,M]所有的素数p[i] 以及逆 ...

随机推荐

  1. jackson 进行json与java对象转换 之二

    主要用于测试学习用jackson包实现json.对象.Map之间的转换. 1.准备测试用的Java类 (1)Link类 package test; /** * Description: 联系方式,被u ...

  2. C语言学习笔记--#error 、 #line 和 #pragma 的使用

    1. #error 的用法 (1)#error 是一种预编译器指示字,用于生成一个编译错误消息 (2)用法:#error message //注意:message 不需要用双引号包围 (3)#erro ...

  3. DAY3-python函数

    目录 一.了解函数 二. 函数定义 三.函数使用原则:先定义,后调用 四.定义函数的三种形式 五.函数的调用 六.函数的参数 七. 函数对象 八.函数嵌套 九.名称空间与作用域 十. 闭包函数 十一. ...

  4. Hadoop运行程序不报错只有warn也没反应也不输出结果的解决办法

    log4j:WARN No appenders could be found for logger (org.apache.hadoop.metrics2.lib.MutableMetricsFact ...

  5. 使用/dev/dsp的wav文件播放器源码

    转载于:http://blog.csdn.net/dux003/article/details/5459423 #include #include #include #include #include ...

  6. 如何使用google等一系列搜索引擎?

    对于我们经常使用的搜索引擎大家都都不陌生,但是,如何高效的利用呢?大家都知道空格是搜索多个关键词,那么有没有其他的快捷键呢?答案是肯定的,以下内容转自知乎 1.双引号 把搜索词放在双引号中,代表完全匹 ...

  7. bootstrap媒体查询常用写法

    @media (max-width: 768px) { /*超小屏幕设备 手机*/ } @media (min-width: 768px) and (max-width: 992px) { /*小屏幕 ...

  8. HTTP、TCP、UDP、Socket关系详解

    TCP.UDP和HTTP关系是什么? 1.TCP/IP是个协议组,可分为三个层次:网络层.传输层和应用层.在网络层有IP协议.ICMP协议.ARP协议.RARP协议和BOOTP协议.在传输层中有TCP ...

  9. [hdu2255]奔小康赚大钱(二分图最优匹配、KM算法)

    题目大意:求二分图的最优匹配(首先数目最大, 其次权值最大). 解题关键:KM算法 复杂度:$O(n^3)$ #include<cstdio> #include<cstring> ...

  10. koa1链接mongodb

    1.项目下安装mongodb和mongoose npm install mongodb --save-dev npm install mongoose --save-dev 2.router中 var ...