link

求出1到N的阶乘中与M的阶乘互质的数的个数,对R取模,多组询问,R<=10^9+10,T<=10000,1 < = N , M < = 10000000

1到\(M!\)中与\(M!\)互质的数显然为\(\varphi(M)\),由于\(N!\)是\(M!\)的倍数,所以一共有\(\frac {N!}{M!}\)组数,每组数都有\(\varphi(M)\)个数字与\(M!\)互质,所以答案为\(\frac{N!}{M!}\varphi(M!)\)

根据\(\varphi\)的计算式,枚举\(M!\)所有素数计算即可,即1M的素数,显然可以预处理,设n=10000000,由于1n内素数为\(\frac{n}{\ln n}\)个,而每个素数由于需要计算逆元,需要时间为\(O(\log n)\),总复杂度为\(O(n)\),预处理阶乘每次询问直接乘即可,询问复杂度\(O(1)\),预处理复杂度\(O(n)\)

#include <cstdio>
using namespace std; bool vis[10000010];
int prime[10000010], tot, fuck = 10000000;
int prod[10000010], p;
int fac[10000010];
int qpow(int x, int y)
{
int res = 1;
for (x %= p; y > 0; y >>= 1, x = x * (long long)x % p) if (y & 1) res = res * (long long)x % p;
return res;
} int main()
{
int t; scanf("%d%d", &t, &p);
prod[1] = fac[1] = fac[0] = 1;
for (int i = 2; i <= fuck; i++)
{
if (vis[i] == false) prime[++tot] = i, prod[i] = (i - 1) * (long long)qpow(i, p - 2) % p;
else prod[i] = 1;
for (int j = 1; j <= tot && i * prime[j] <= fuck; j++)
{
vis[i * prime[j]] = true;
if (i % prime[j] == 0) break;
}
prod[i] = prod[i] * (long long)prod[i - 1] % p;
fac[i] = i * (long long)fac[i - 1] % p;
}
while (t --> 0)
{
int n, m;
scanf("%d%d", &n, &m);
printf("%d\n", (int)(fac[n] * (long long)prod[m] % p));
}
return 0;
}

38行一遍A

upd:观察了pinkrabbit的题解,发现这么写是错的,对于n>=r的情况,n中的因子r可能会和phi中的逆元消掉(phi中因子没有逆元的假象掩盖了事实)

解决方法类似扩展卢卡斯,记录成\(x*y^b\)的形式。不过感觉出题人不会弄成这么毒瘤,除了你谷的管理员加强数据,就不改了,长个记性就行。。。真相:由于懒癌

luogu2155 [SDOI2008]沙拉公主的困惑的更多相关文章

  1. Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2560  Solved: 857[Submit][St ...

  2. 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

  3. 洛咕 P2155 [SDOI2008]沙拉公主的困惑

    洛咕 P2155 [SDOI2008]沙拉公主的困惑 有个结论,就是如果\(gcd(a,b)=1\),那么\(gcd(a+kb,b)=1\).证明比较显然. 所以这个题目要问的\(n!\)就可以分成\ ...

  4. BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 6103  Solved: 2060[Submit][S ...

  5. BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 5003  Solved: 1725 [Submit] ...

  6. 【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

  7. 【bzoj2186】[Sdoi2008]沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 3303  Solved: 1129[Submit][S ...

  8. 【BZOJ2186】[Sdoi2008]沙拉公主的困惑 线性筛素数

    [BZOJ2186][Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M! ...

  9. 【bzoj2186】: [Sdoi2008]沙拉公主的困惑 数论-欧拉函数

    [bzoj2186]: [Sdoi2008]沙拉公主的困惑 考虑当 gcd(a,b)=1 则 gcd(nb+a,b)=1 所以[1,N!]与M!互质的个数就是 筛出[1,M]所有的素数p[i] 以及逆 ...

随机推荐

  1. UIView显示原理和过程

    一.UIView显示原理         一个控件,UIView之所以可以显示,是因为内部在UIView的内部有一个layer属性作为根图层,根图层上可以放其他子图层,在UIView中所有能够看到的内 ...

  2. java常用八大排序法

    最近查资料发现java排序挺有意思的,其中包含常见八种具有代表性的排序法:笔者觉得排序的功能重要,但更重要的是排序的思想:所以简单叙述一下常见排序方法名称,并用代码举例. A.插入排序(直接插入排序. ...

  3. 使用Eclipse中遇到的问题

    1.解决eclipse中jsp没有代码提示问题 原因是项目没有关联TOMCAT库文件: 右键项目—> 属性->JAVA Build Path -> Add Library->S ...

  4. java中sleep()的用法

    Thread.sleep(long millis)和Thread.sleep(long millis, int nanos)静态方法强制当前正在执行的线程休眠(暂停执行),以“减慢线程”. 当线程睡眠 ...

  5. re.I re.L re.M re.S re.U re.X

  6. Codeforces 1076E Vasya and a Tree(树状数组)或dfs

    题意:给你一颗以1为根节点的树,初始所有节点的权值为0,然后有m个操作,每个操作将点x的所有距离不超过d的节点权值+1,问经过m次操作后每个节点权值是多少? 思路:如果是一个序列,就可以直接用树状数组 ...

  7. 使用java开源包解析ifc并获取数据(树形结构)

     import java.io.File;import java.util.Collection;import java.util.Enumeration;import java.util.HashM ...

  8. 算法Sedgewick第四版-第1章基础-2.1Elementary Sortss-007归并排序(自下而上)

    一. 1. 2. 3. 二.代码 package algorithms.mergesort22; import algorithms.util.StdIn; import algorithms.uti ...

  9. 使用zookeeper实现服务路由和负载均衡

    三个类: ServiceAProvider ServiceBProvider ServiceConsumer 其中 ServiceAProvider提供的服务名service-A,指向IP为192.1 ...

  10. java中是如何解决编码问题的,比如char类型的对象是如何存储的呢?

    主题句:每个编码形式将字符从字符集转换为编码数据. 说白了一个代码点就是一个Unicode字符.代码单元就是代码点的集合. 字符视图 要了解字符集标准,您必须能区分三种不同的字符视图: 字符集(字符的 ...