题目描述

lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数。现在lxhgww想要知道满足要求的字符串共有多少个,聪明的程序员们,你们能帮助他吗?

输入

输入数据是一行,包括2个数字n和m

输出

输出数据是一行,包括1个数字,表示满足要求的字符串数目,这个数可能会很大,只需输出这个数除以20100403的余数

样例输入

2 2

样例输出

2


题解

数论-Catalan数

如果n=m,那么这道题就是裸的Catalan数问题,答案为C(2n,n)-C(2n,n-1)。

当这道题的n!=m时,我们可以同样按照Catalan数的思想来做。

先求出没有限制条件的方案数,显然为C(n+m,m)。

然后再考虑不满足条件的方案数。

设选择一个n表示+1,选择一个m表示-1,那么如果不满足条件,则一定存在一个位置的前缀和等于-1。

将这个位置及其前面的数n、m互换,即所有数乘上-1,那么整个序列的和变为n-m+2。

并且这样的操作只需要在新序列存在某个位置前缀和为1时满足条件,而初始值是0,最终值为n-m,一定存在,这是显然的。

故这样的新序列选择不受条件约束,且存在m-1个“-1”,所以发案数为C(n+m,m-1)。

所以最终答案为C(n+m,m)-C(n+m,m-1)。

另外网上存在一种几何证法,我觉得也挺好的,这里附上网址:http://www.cnblogs.com/jianglangcaijin/p/3443689.html

#include <cstdio>
#define mod 20100403
typedef long long ll;
ll fac[2000010];
ll pow(ll x , int y)
{
ll ans = 1;
while(y)
{
if(y & 1) ans = ans * x % mod;
x = x * x % mod , y >>= 1;
}
return ans;
}
ll cal(int n , int m)
{
return fac[n] * pow(fac[m] , mod - 2) % mod * pow(fac[n - m] , mod - 2) % mod;
}
int main()
{
int n , m , i;
scanf("%d%d" , &n , &m);
fac[0] = 1;
for(i = 1 ; i <= n + m ; i ++ ) fac[i] = fac[i - 1] * i % mod;
printf("%lld\n" , (cal(n + m , m) - cal(n + m , m - 1) + mod) % mod);
return 0;
}

【bzoj1856】[Scoi2010]字符串 Catalan数的更多相关文章

  1. BZOJ 1856: [Scoi2010]字符串 [Catalan数]

    1856: [Scoi2010]字符串 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1418  Solved: 790[Submit][Status][ ...

  2. 1856: [Scoi2010]字符串(Catalan数)

    1856: [Scoi2010]字符串 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 2117  Solved: 1211[Submit][Status] ...

  3. BZOJ1856:[SCOI2010]字符串(卡特兰数,组合数学)

    Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgw ...

  4. Bzoj 1856: [Scoi2010]字符串 卡特兰数,乘法逆元,组合数,数论

    1856: [Scoi2010]字符串 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1194  Solved: 651[Submit][Status][ ...

  5. bzoj 1856: [Scoi2010]字符串 卡特兰数

    1856: [Scoi2010]字符串 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1458  Solved: 814[Submit][Status][ ...

  6. BZOJ1856[SCOI2010]字符串

    Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgw ...

  7. BZOJ1856 [Scoi2010]字符串 数论

    原文链接http://www.cnblogs.com/zhouzhendong/p/8084577.html 题目传送门 - BZOJ1856 题意概括 找出由n个1,m个0组成的字符串,且任意前几个 ...

  8. BZOJ1856[Scoi2010]字符串——组合数学+容斥

    题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足 ...

  9. bzoj千题计划299:bzoj1856: [Scoi2010]字符串

    http://www.lydsy.com/JudgeOnline/problem.php?id=1856 卡特兰数 从(1,1)走到(n,m),不能走y=x 上方的点,求方案数 从(1,1)走到(n, ...

随机推荐

  1. git 删除本地存在,远程已经删除的分支

    git remote prune origin 强迫症,看到这些分支不一致就来气!

  2. UVa中国麻将(Chinese Mahjong,Uva 11210)

    简单的回溯题 #include<iostream> #include<cstdio> #include<cstring> #include<algorithm ...

  3. JAVA / MySql 编程—— 第四章 高级查询(二)

    1.        EXISTS和NOT EXISTS子查询:EXISTS关键字用来检测数数据库对象是否存在.                  ★EXISTS和NOT EXISTS的结果只取决于是否 ...

  4. 深入理解restfulAPI和 Oauth2.0(精简版)

    一.restfulAPI 1.解释: restfulAPI协议,我们也可以说是一套API接口编写风格. 它被现在很多企业所认可和默认,是一套成俗的API接口编写方案. 2.restfulAPI之资源 ...

  5. Python学习笔记:单例模式

    单例模式:一个类无论实例化多少次,返回的都是同一个实例,例如:a1=A(), a2=A(), a3=A(),a1.a2和a3其实都是同一个对象,即print(a1 is a2)和print(a2 is ...

  6. 17-比赛1 B - 子串计算 Chef and his string challenge (string的运用)

    Chef's best friend Jerry gives Chef a string A and wants to know the number of string A that can be ...

  7. 笔记-reactor pattern

    笔记-reactor pattern 1.      reactor模式 1.1.    什么是reactor模式 The reactor design pattern is an event han ...

  8. RHCE考试

    RHCSA_PDF版传送门:https://files.cnblogs.com/files/zhangjianghua/RHCSA%E8%AF%95%E9%A2%98.pdf RHCE_PDF版传送门 ...

  9. mongo创建数据库和用户

    1.linux安装mongo conf文件配置: 配置文件: dbpath=/home/data/mongodb/mongodb logpath=/home/data/logs/mongodb.log ...

  10. Django 2.0官方文档中文 总索引

    Django 2.0官方文档中文 渣翻 总索引 翻译 2017年12月08日 11:19:1 官方原文: https://docs.djangoproject.com/en/2.0/ 当前翻译版本:  ...