【POJ 2976 Dropping tests】
Time Limit: 1000MS
Memory Limit: 65536K
Total Submissions: 13849
Accepted: 4851
Description
In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be
.
Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.
Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is
. However, if you drop the third test, your cumulative average becomes
.
Input
The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.
Output
For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.
Sample Input
3 1
5 0 2
5 1 6
4 2
1 2 7 9
5 6 7 9
0 0
Sample Output
83
100
Hint
To avoid ambiguities due to rounding errors, the judge tests have been constructed so that all answers are at least 0.001 away from a decision boundary (i.e., you can assume that the average is never 83.4997).
【翻译】给出n个物品,每个物品有两个值a和b,选择n-k个元素,询问的最大值。
题解:
①题目要求求出Sigma式子的最大值,可以考虑单个式子ai/bi的最大值,然后将它们合起来。
②但是直接计算是不方便转化的,因为Sigma和单个式子还是有区别的。
③由于具有取值上的单调性,因此考虑二分,二分最大值x,那么则有:
∑ai/∑bi>=x 移项得到: ∑ai>=x*∑bi ——> ∑ai-x*∑bi>=0
④所以就二分啊,使得x不断变大,大到使得∑ai-x*∑bi几乎等于0,就是最有解了。
#include<stdio.h>
#include<algorithm>
#define go(i,a,b) for(int i=a;i<=b;i++)
#define ro(i,a,b) for(int i=a;i>=b;i--)
int n,k,a[4001],b[4001];
double T[4001],res,l,r,M;
bool check(double x)
{
go(i,1,n)T[i]=a[i]-x*b[i];std::sort(T+1,T+1+n);res=0;
go(i,k+1,n)res+=T[i];return res>=0;
}
int main()
{
while(scanf("%d%d",&n,&k),n|k)
{
go(i,1,n)scanf("%d",a+i);l=0;
go(i,1,n)scanf("%d",b+i);r=1;
while(r-l>1e-6)M=(l+r)/2,check(M)?l=M:r=M;printf("%.0f\n",l*100);
}
}//Paul_Gudeiran
希望你把我记住你流浪的孩子,无论在何时何地我都想念着你。————汪峰《我爱你中国》
【POJ 2976 Dropping tests】的更多相关文章
- POJ - 2976 Dropping tests && 0/1 分数规划
POJ - 2976 Dropping tests 你有 \(n\) 次考试成绩, 定义考试平均成绩为 \[\frac{\sum_{i = 1}^{n} a_{i}}{\sum_{i = 1}^{n} ...
- 二分算法的应用——最大化平均值 POJ 2976 Dropping tests
最大化平均值 有n个物品的重量和价值分别wi 和 vi.从中选出 k 个物品使得 单位重量 的价值最大. 限制条件: <= k <= n <= ^ <= w_i <= v ...
- POJ 2976 Dropping tests 【01分数规划+二分】
题目链接:http://poj.org/problem?id=2976 Dropping tests Time Limit: 1000MS Memory Limit: 65536K Total S ...
- POJ 2976 Dropping tests 01分数规划 模板
Dropping tests Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6373 Accepted: 2198 ...
- POJ 2976 Dropping tests(01分数规划入门)
Dropping tests Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11367 Accepted: 3962 D ...
- POJ 2976 Dropping tests(01分数规划)
Dropping tests Time Limit: 1000MS Memory Limit: 65536K Total Submissions:17069 Accepted: 5925 De ...
- POJ 2976 Dropping tests (0/1分数规划)
Dropping tests Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4654 Accepted: 1587 De ...
- Poj 2976 Dropping tests(01分数规划 牛顿迭代)
Dropping tests Time Limit: 1000MS Memory Limit: 65536K Description In a certain course, you take n t ...
- poj 2976 Dropping tests 二分搜索+精度处理
Dropping tests Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8349 Accepted: 2919 De ...
随机推荐
- tcp文件下载客户端+服务端
客户端: import socket if __name__ == '__main__': # 创建tcp客户端socket tcp_client_socket = socket.socket(soc ...
- kivy学习一:安装kivy模块
现在是看脸的时代,一个程序没有一个漂亮的UI,就像一个深闺中的美女没人欣赏. 当然作为一个小小.............白,没有那么高的要求,当前要先有脸是不? 首选python自家的模块tkinte ...
- mysql8.0 忘记root密码
先打开一个cmd:net stop mysql //关闭mysql服务mysqld --shared-memory --skip-grant-tables//跳过登录密码在不关闭第一个CMD的情况下打 ...
- bin/postconf: error while loading shared libraries: libmysqlclient
今天在编译安装postfix的时候 make install 出现如下错误 bin/postconf: error while loading shared libraries: libmysqlcl ...
- Aizu:0005-GCD and LCM
GCD and LCM Time limit 1000 ms Memory limit 131072 kB Problem Description Write a program which comp ...
- [Bzoj2246]迷宫探险(概率+DP)
Description 题目链接 Solution 用三进制表示陷阱状态,1表示有害,2表示无害,0表示不知道 用\(f[S][i]\)表示状态为S时陷阱i有害的概率,这个可以预处理出 \(d[S][ ...
- Leetcode 173. 二叉搜索树迭代器
题目链接 https://leetcode.com/problems/binary-search-tree-iterator/description/ 题目描述 实现一个二叉搜索树迭代器.你将使用二叉 ...
- python使用网易邮箱发邮件
# -*- coding: UTF-8 -*- import smtplib from email.mime.text import MIMEText import email.mime.multip ...
- SVD在推荐系统中的应用详解以及算法推导
SVD在推荐系统中的应用详解以及算法推导 出处http://blog.csdn.net/zhongkejingwang/article/details/43083603 前面文章SVD原理及推 ...
- Git-Git里程碑
里程碑即Tag,是人为对提交进行的命名.这和Git的提交ID是否太长无关,使用任何数字版本号无论长短,都没有使用一个直观的表意的字符串来得方便.例如:用里程碑名称"v2.1"对应于 ...