Time Limit: 1000MS
Memory Limit: 65536K

Total Submissions: 13849
Accepted: 4851

Description

In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be

.

Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.

Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .

Input

The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ aibi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.

Output

For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.

Sample Input

3 1
5 0 2
5 1 6
4 2
1 2 7 9
5 6 7 9
0 0

Sample Output

83
100

Hint

To avoid ambiguities due to rounding errors, the judge tests have been constructed so that all answers are at least 0.001 away from a decision boundary (i.e., you can assume that the average is never 83.4997).

【翻译】给出n个物品,每个物品有两个值a和b,选择n-k个元素,询问的最大值。

题解:

        ①题目要求求出Sigma式子的最大值,可以考虑单个式子ai/bi的最大值,然后将它们合起来。

        ②但是直接计算是不方便转化的,因为Sigma和单个式子还是有区别的。

        ③由于具有取值上的单调性,因此考虑二分,二分最大值x,那么则有:

                 ∑ai/∑bi>=x      移项得到:   ∑ai>=x*∑bi ——> ∑ai-x*∑bi>=0

        ④所以就二分啊,使得x不断变大,大到使得∑ai-x*∑bi几乎等于0,就是最有解了。

#include<stdio.h>
#include<algorithm>
#define go(i,a,b) for(int i=a;i<=b;i++)
#define ro(i,a,b) for(int i=a;i>=b;i--)
int n,k,a[4001],b[4001];
double T[4001],res,l,r,M;
bool check(double x)
{
go(i,1,n)T[i]=a[i]-x*b[i];std::sort(T+1,T+1+n);res=0;
go(i,k+1,n)res+=T[i];return res>=0;
}
int main()
{
while(scanf("%d%d",&n,&k),n|k)
{
go(i,1,n)scanf("%d",a+i);l=0;
go(i,1,n)scanf("%d",b+i);r=1;
while(r-l>1e-6)M=(l+r)/2,check(M)?l=M:r=M;printf("%.0f\n",l*100);
}
}//Paul_Gudeiran

 

希望你把我记住你流浪的孩子,无论在何时何地我都想念着你。————汪峰《我爱你中国》

【POJ 2976 Dropping tests】的更多相关文章

  1. POJ - 2976 Dropping tests && 0/1 分数规划

    POJ - 2976 Dropping tests 你有 \(n\) 次考试成绩, 定义考试平均成绩为 \[\frac{\sum_{i = 1}^{n} a_{i}}{\sum_{i = 1}^{n} ...

  2. 二分算法的应用——最大化平均值 POJ 2976 Dropping tests

    最大化平均值 有n个物品的重量和价值分别wi 和 vi.从中选出 k 个物品使得 单位重量 的价值最大. 限制条件: <= k <= n <= ^ <= w_i <= v ...

  3. POJ 2976 Dropping tests 【01分数规划+二分】

    题目链接:http://poj.org/problem?id=2976 Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  4. POJ 2976 Dropping tests 01分数规划 模板

    Dropping tests   Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6373   Accepted: 2198 ...

  5. POJ 2976 Dropping tests(01分数规划入门)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11367   Accepted: 3962 D ...

  6. POJ 2976 Dropping tests(01分数规划)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:17069   Accepted: 5925 De ...

  7. POJ 2976 Dropping tests (0/1分数规划)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4654   Accepted: 1587 De ...

  8. Poj 2976 Dropping tests(01分数规划 牛顿迭代)

    Dropping tests Time Limit: 1000MS Memory Limit: 65536K Description In a certain course, you take n t ...

  9. poj 2976 Dropping tests 二分搜索+精度处理

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8349   Accepted: 2919 De ...

随机推荐

  1. HashMap的使用

    HashMap的使用 import java.util.HashMap; import java.util.Iterator; //HashMap<key, value>():键值对的形式 ...

  2. motto - question - bodyParser.urlencoded 中设置 extended 为 true 和 false 有什么区别吗?

    本文搜索关键字:motto node nodejs js javascript body-parser bodyparser urlencoded x-www-form-urlencoded exte ...

  3. Spring Boot Shiro权限管理--自定义 FormAuthenticationFilter验证码整合

    思路shiro使用FormAuthenticationFilter进行表单认证,验证校验的功能应该加在FormAuthenticationFilter中,在认证之前进行验证码校验. 需要写FormAu ...

  4. Linux下Mysql5.6 二进制安装

    1.1下载二进制安装包 wget https://dev.mysql.com/get/Downloads/MySQL-5.6/mysql-5.6.40-linux-glibc2.12-x86_64.t ...

  5. FreeBSD--常用命令

    FreeBSD常用命令   查看网络流量 a.systat -if 1 (1表示1s刷新屏幕一次) b.netstat 1 # Traffic 流量 peak 峰值 average 平均值 查看进程p ...

  6. php jsonp实例 mip无限滚动组件接口注意事项

    在改造mip的过程中,很多同学遇到这样一个问题.mip无限滚动问题 异步请求数据接口(仅支持 JSONP 请求) 异步请求接口需要规范 callback 为 'callback' 那么什么是JSONP ...

  7. Laravel系列之CMS系统学习 — 角色、权限配置【1】

    一.后台Admin模块 后台管理是有管理员的,甚至超级管理员,所以在设计数据表的时候,就会有2个方案,一个方案是共用users数据表,添加is_admin,is_superAdmin字段来进行验证,或 ...

  8. python中全局变量和局部变量

    例1: a = 100 #定义全局变量a def test1(): print(a) #此处a为全局变量 def test2(a):#此处a为局部变量 print(a)#此处a为局部变量 test1( ...

  9. order-by-offset-fetch

  10. 准备篇(二)C语言

    因为C语言部分打算单独维护,所以 目录: 1. C语言基础篇(零)gcc编译和预处理 2. C语言基础篇(一)关键字 3. C语言基础篇(二)运算符 4. C语言指针篇(一)指针与指针变量 5. C语 ...