让我再讲一个故事吧。

又有一些小精灵要准备从银月城(S)迁徙到Nibel山(T)。

这两个地方之间的道路构成了一个网络。

每个道路都有它自己的容量,这决定了每天有多少小精灵可以同时从这儿通过。

和上一篇不同的是,由于上次迁徙的规模很大,

吸引了其它一些种族的注意,

这次每条道路都会有一些人/兽人/哥布林/...向精灵们征收过路费,

现在精灵们想知道,在花费最小的情况下,它们迁徙的速度最大是多少只每天。

费用流=最小费用最大

在要求流最大的情况下要求费用最小,好像原来的isap已经派不上用场了呢!

让我们回到最朴实的EK算法上。

EK算法每一次只寻找一条增广路,

这带给它解决这一个方面的问题的得天独厚的优势。

这是原来的EK伪算法:

int BFS()
{
/*找到一条增广路*/
}
int ek()
{
/*对找到的增广路进行一系列处理*/
}

我们用BFS找增广路。

想象一下,

既然要求费用最小

我们就把费用作为路径长度

之后每一次跑一遍最短路

那么就可以保证花费最小了!


所以,我们只要把原来的BFS()改成spfa()或者dijkstra()就好啦

ps.一般dijkstra只能跑不带负权边的图,
但是有一种特殊的技巧可以把边权魔改成正的。

以下是拿辣鸡spfa跑的费用流

#include<bits/stdc++.h>
using namespace std;
typedef pair<int,int> pii;
#define mp(a,b) make_pair(a,b)
#define ll first
#define rr second
inline int gotcha()
{
register int a=0,b=1,c=getchar();
while(!isdigit(c))b^=a=='-',c=getchar();
while(isdigit(c))a=a*10+c-48,c=getchar();
return b?a:-a;
}
const int _ = 5002 , __ = 50002<<1 , inf = 0x3f3f3f3f;
int to[__],ne[__],v[__],co[__],he[__]={0},ecnt=1;
int n,m,dis[_],pe[_],pv[_],S,T;
bool ed[_];
void adde(int a,int b,int c,int d){to[++ecnt]=b,v[ecnt]=c,co[ecnt]=d,ne[ecnt]=he[a],he[a]=ecnt;}
queue<int> q;
int spfa()
{
memset(dis,63,sizeof(dis)),memset(ed,0,sizeof(ed));
while(!q.empty())q.pop();
register int i,a;
q.push(S),ed[S]=1,dis[S]=0;
while(!q.empty())
{
a=q.front(),q.pop();ed[a]=0;
for(i=he[a];i;i=ne[i])
if(v[i]>0 && dis[to[i]]>dis[a]+co[i])
{
dis[to[i]]=dis[a]+co[i];
pe[to[i]]=i,pv[to[i]]=a;
if(!ed[to[i]])ed[to[i]]=1,q.push(to[i]);
}
}
return dis[T]<inf;
}
pii mfmc()
{
register int i,sco=0,sfl=0,flw;
while(spfa())
{
flw=inf;
for(i=T;i!=S;i=pv[i])flw=min(flw,v[pe[i]]);
for(i=T;i!=S;i=pv[i])v[pe[i]]-=flw,v[pe[i]^1]+=flw;
sco+=flw*dis[T],sfl+=flw;
}
return mp(sfl,sco);
}
int main()
{
register int i,j,k,a,b;
register pii tmp;
n=gotcha(),m=gotcha(),S=gotcha(),T=gotcha();
for(i=1;i<=m;i++)
{
j=gotcha(),k=gotcha(),a=gotcha(),b=gotcha();
adde(j,k,a,b),adde(k,j,0,-b);
}
tmp=mfmc();
printf("%d %d",tmp.ll,tmp.rr);
return 0;
}

这就不写伪代码了吧!?

以后补

让菜鸡讲一讲费用流(EK)的更多相关文章

  1. HDU 2064 菜鸡第一次写博客

    果然集训就是学长学姐天天传授水铜的动态规划和搜索,今天讲DP由于困意加上面瘫学长"听不懂就是你不行"的呵呵传授,全程梦游.最后面对连入门都算不上的几道动态规划,我的内心一片宁静,甚 ...

  2. 配置魔药 [NOIP模拟] [DP] [费用流]

    问题描述在<Harry Potter and the Chamber of Secrets>中,Ron 的魔杖因为坐他老爸的 Flying Car 撞到了打人柳,不幸被打断了,从此之后,他 ...

  3. 一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记

    一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记 曾经某个下午我以为我会了FWT,结果现在一丁点也想不起来了--看来"学"完新东西不经常做题不写博客,就白学了 = = 我没啥智 ...

  4. BZOJ5120 [2017国家集训队测试]无限之环 费用流

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ5120 题意概括 原题挺简略的. 题解 本题好难. 听了任轩笛大佬<国家队神犇>的讲课才 ...

  5. 初识费用流 模板(spfa+slf优化) 餐巾计划问题

    今天学习了最小费用最大流,是网络流算法之一.可以对于一个每条边有一个容量和一个费用(即每单位流的消耗)的图指定一个源点和汇点,求在从源点到汇点的流量最大的前提下的最小费用. 这里讲一种最基础也是最好掌 ...

  6. 【BZOJ4849】[Neerc2016]Mole Tunnels 模拟费用流

    [BZOJ4849][Neerc2016]Mole Tunnels Description 鼹鼠们在底下开凿了n个洞,由n-1条隧道连接,对于任意的i>1,第i个洞都会和第i/2(取下整)个洞间 ...

  7. 渣渣菜鸡的 ElasticSearch 源码解析 —— 启动流程(下)

    关注我 转载请务必注明原创地址为:http://www.54tianzhisheng.cn/2018/08/12/es-code03/ 前提 上篇文章写完了 ES 流程启动的一部分,main 方法都入 ...

  8. 渣渣菜鸡的 ElasticSearch 源码解析 —— 启动流程(上)

    关注我 转载请务必注明原创地址为:http://www.54tianzhisheng.cn/2018/08/11/es-code02/ 前提 上篇文章写了 ElasticSearch 源码解析 -- ...

  9. [tyvj-2054][Nescafé29]四叶草魔杖 费用流

    lyd讲的最小生成树的题. 道理我都懂,费用流多好写,又好调.但和一般费用流不一样的就是它走过一次后费用需调成0,但是再等回流,就恢复原状即可. #include <queue> #inc ...

随机推荐

  1. word中已删除设置是否显示

        我们打开别人发过来的文档时经常会出现如下图所示,其实这个不是文档的异常,只是word设置显示了修订版标记,如果我们需要去除这个,只需要在审阅-修订功能下面选择显示最终版即可(测试用的10版,其 ...

  2. 笨办法学Python(十九)

    习题 19: 函数和变量 函数这个概念也许承载了太多的信息量,不过别担心.只要坚持做这些练习,对照上个练习中的检查点检查一遍这次的联系,你最终会明白这些内容的. 有一个你可能没有注意到的细节,我们现在 ...

  3. 365. Water and Jug Problem (GCD or BFS) TBC

    https://leetcode.com/problems/water-and-jug-problem/description/ -- 365 There are two methods to sol ...

  4. Aizu The Maximum Number of Customers

    http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=DSL_5_A The Maximum Number of Customers Ide ...

  5. 小程序wx.request的POST方法的参数传输服务器接收不到

    这是API里面的例子: 而实际这样,服务端拿到的是空值. 将header更改一下,application/x-www-form-urlencoded,则可以让服务器收到数据

  6. BestCoder Round #89 1001 Fxx and string

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5944 分析: 竟然 i,j,k成等比数列,即i*k = j*j,还要满足 j|i or j|k. 不防 ...

  7. python 3+djanjo 2.0.7简单学习(四)--Django视图

    1.概念 Django 中的视图的概念是「一类具有相同功能和模板的网页的集合」.比如,在一个博客应用中,你可能会创建如下几个视图: 博客首页——展示最近的几项内容. 内容“详情”页——详细展示某项内容 ...

  8. Mac安装protobuf 流程

    下载 https://github.com/google/protobuf/releases 找到对应版本下载 编译 cd protobuf./autogen.sh./configuremake 安装 ...

  9. e.preventdefault() 别滥用

    有的时候我们会为事件回调函数添加一个参数(通常是e),并在函数中加入e.preventdefault():以取消默认行为.由于习惯,我顺手将它写到了一个checkbox的change事件中.由于不同的 ...

  10. 1.Mysql集群------Docker下的Mysql主从复制

    前言: 实话说,我想做的是Mysql集群架构. 我的计划是: 1.实现Docker下的Mysql主从复制 2.实现MyCat基于Mysql的读写分离 3.实现MyCat的分库分表 4.实现pxc集群 ...