Nim
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5232   Accepted: 2444

Description

Nim is a 2-player game featuring several piles of stones. Players alternate turns, and on his/her turn, a player’s move consists of removing one or more stones from any single pile. Play ends when all the stones have been removed, at which point the last player to have moved is declared the winner. Given a position in Nim, your task is to determine how many winning moves there are in that position.

A position in Nim is called “losing” if the first player to move from that position would lose if both sides played perfectly. A “winning move,” then, is a move that leaves the game in a losing position. There is a famous theorem that classifies all losing positions. Suppose a Nim position contains n piles having k1, k2, …, kn stones respectively; in such a position, there are k1 + k2 + … + kn possible moves. We write each ki in binary (base 2). Then, the Nim position is losing if and only if, among all the ki’s, there are an even number of 1’s in each digit position. In other words, the Nim position is losing if and only if the xor of the ki’s is 0.

Consider the position with three piles given by k1 = 7, k2 = 11, and k3 = 13. In binary, these values are as follows:

 111
1011
1101

There are an odd number of 1’s among the rightmost digits, so this position is not losing. However, suppose k3 were changed to be 12. Then, there would be exactly two 1’s in each digit position, and thus, the Nim position would become losing. Since a winning move is any move that leaves the game in a losing position, it follows that removing one stone from the third pile is a winning move when k1 = 7, k2 = 11, and k3 = 13. In fact, there are exactly three winning moves from this position: namely removing one stone from any of the three piles.

Input

The input test file will contain multiple test cases, each of which begins with a line indicating the number of piles, 1 ≤ n ≤ 1000. On the next line, there are n positive integers, 1 ≤ ki ≤ 1, 000, 000, 000, indicating the number of stones in each pile. The end-of-file is marked by a test case with n = 0 and should not be processed.

Output

For each test case, write a single line with an integer indicating the number of winning moves from the given Nim position.

Sample Input

3
7 11 13
2
1000000000 1000000000
0

Sample Output

3
0

Source

【思路】

博弈

设v=a1^a2…^an,对于i,如果ai>(v^ai)则先手可以把ai变为v^ai,此时局面必败。累计ans即可。

【代码】

 #include<cstdio>
using namespace std; int n,a[]; int main() {
while(scanf("%d",&n)== && n) {
int v=,ans=;
for(int i=;i<n;i++)
scanf("%d",&a[i]) , v^=a[i];
for(int i=;i<n;i++)
if((v^a[i])<a[i]) ans++;
printf("%d\n",ans);
}
return ;
}

poj 2975 Nim(博弈)的更多相关文章

  1. POJ 2234 Nim博弈

    思路: nim博弈裸题 xor一下 //By SiriusRen #include <cstdio> using namespace std; int n,tmp,xx; int main ...

  2. POJ 2975 Nim 尼姆博弈

    题目大意:尼姆博弈,求先手必胜的情况数 题目思路:判断 ans=(a[1]^a[2]--^a[n]),求ans^a[i] < a[i]的个数. #include<iostream> ...

  3. POJ 2975 Nim(博弈)题解

    题意:已知异或和为0为必败态,异或和不为0为必胜态,问你有几种方法把开局从当前状态转为必败态. 思路:也就是说,我们要选一堆石头,然后从这堆石头拿走一些使剩下的石碓异或和为0.那么只要剩下石堆的异或和 ...

  4. POJ 2975 Nim(博弈论)

    [题目链接] http://poj.org/problem?id=2975 [题目大意] 问在传统的nim游戏中先手必胜策略的数量 [题解] 设sg=a1^a1^a3^a4^………^an,当sg为0时 ...

  5. poj -2975 Nim

      Nim Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4312   Accepted: 1998 Description ...

  6. [原博客] POJ 2975 Nim 统计必胜走法个数

    题目链接题意介绍了一遍Nim取石子游戏,可以看上一篇文章详细介绍.问当前状态的必胜走法个数,也就是走到必败状态的方法数. 我们设sg为所有个数的Xor值.首先如果sg==0,它不可能有必胜走法,输出0 ...

  7. poj 2975 Nim 博弈论

    令ans=a1^a2^...^an,如果需要构造出异或值为0的数, 而且由于只能操作一堆石子,所以对于某堆石子ai,现在对于ans^ai,就是除了ai以外其他的石子 的异或值,如果ans^ai< ...

  8. POJ 2975 Nim(普通nim)

    题目链接 #include<iostream> #include<cstdio> using namespace std; int main() { ]; int sum,cn ...

  9. POJ 2234 Matches Game(Nim博弈裸题)

    Description Here is a simple game. In this game, there are several piles of matches and two players. ...

随机推荐

  1. EventBus3 简单使用及注意点

    博客: 安卓之家 微博: 追风917 CSDN: 蒋朋的家 简书: 追风917 # EventBus3 简介 EventBus Android 发布/订阅事件总线,可简化 Activities, Fr ...

  2. 配置MyEclipse+Hibernate连接Sql Server 2008出错

    下文主要是讲述最近配置MyEclipse连接Sql Server 2008时遇到的一个问题,而不关注如何配置Sql Server 2008支持TCP/IP连接.Hibernate如何操作Sql Ser ...

  3. 第1条:了解Objective-C 语言的起源

    1.OC语言是由Smalltalk演化而来.该语言使用“消息结构” 而 非“函数调用”. 使用“消息结构”的语言,其运行时所执行的代码由运行环境来决定: 编译器不需要关心接收消息的对象是什么类型,只在 ...

  4. EDM推送

    一.需求描述:        日前,做了一个发送客户账单的功能,邮件模板采用自定义,生成vm文件,保存至redis,    采用jodd-mail发送邮件,查询用户账单数据,账单明细,缓存加载模板并渲 ...

  5. php中如何实现网上商城用户历史浏览记录的代码

    /如是COOKIE 里面不为空,则往里面增加一个商品ID if (!empty($_COOKIE['SHOP']['history'])){ //取得COOKIE里面的值,并用逗号把它切割成一个数组 ...

  6. js 保留小数位数

    eg: var num=3.1415926 小数位处理:num.toFixed(n)      n:小数位数

  7. juquery验证插件validation addMethod方法使用笔记

    该方法有三个api接口参数,name,method,messages addMethod(name,method,message)方法 参数 name 是添加的方法的名字. 参数 method 是一个 ...

  8. 11-17的学习总结(DOMfirstday)

    HTML: 超文本标记语言,专门定义网页内容的语言 XHTML: 严格的HTML标准 DHTML: 所有实现网页动态效果技术的统称 XML: 可扩展的标记语言,标签都是自定义的 XML语法和HTML语 ...

  9. ecshop安装程序源码阅读-安装脚本(1)

    定义系统判断常量 引入安装初始化文件 设置时区 报告所有错误 定义站点根常量 定义php自身相对路径 引入系统,公共函数库 引入并初始化错误处理对象 引入并初始化模板引擎 引入安装相关业务 发送HTT ...

  10. C# C/S系统开发平台版本区别

    各版本功能区别   C/S系统开发框架-企业版 V4.0 (Enterprise Edition) 简介: http://www.csframework.com/cs-framework-4.0.ht ...