Nim
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5232   Accepted: 2444

Description

Nim is a 2-player game featuring several piles of stones. Players alternate turns, and on his/her turn, a player’s move consists of removing one or more stones from any single pile. Play ends when all the stones have been removed, at which point the last player to have moved is declared the winner. Given a position in Nim, your task is to determine how many winning moves there are in that position.

A position in Nim is called “losing” if the first player to move from that position would lose if both sides played perfectly. A “winning move,” then, is a move that leaves the game in a losing position. There is a famous theorem that classifies all losing positions. Suppose a Nim position contains n piles having k1, k2, …, kn stones respectively; in such a position, there are k1 + k2 + … + kn possible moves. We write each ki in binary (base 2). Then, the Nim position is losing if and only if, among all the ki’s, there are an even number of 1’s in each digit position. In other words, the Nim position is losing if and only if the xor of the ki’s is 0.

Consider the position with three piles given by k1 = 7, k2 = 11, and k3 = 13. In binary, these values are as follows:

 111
1011
1101

There are an odd number of 1’s among the rightmost digits, so this position is not losing. However, suppose k3 were changed to be 12. Then, there would be exactly two 1’s in each digit position, and thus, the Nim position would become losing. Since a winning move is any move that leaves the game in a losing position, it follows that removing one stone from the third pile is a winning move when k1 = 7, k2 = 11, and k3 = 13. In fact, there are exactly three winning moves from this position: namely removing one stone from any of the three piles.

Input

The input test file will contain multiple test cases, each of which begins with a line indicating the number of piles, 1 ≤ n ≤ 1000. On the next line, there are n positive integers, 1 ≤ ki ≤ 1, 000, 000, 000, indicating the number of stones in each pile. The end-of-file is marked by a test case with n = 0 and should not be processed.

Output

For each test case, write a single line with an integer indicating the number of winning moves from the given Nim position.

Sample Input

3
7 11 13
2
1000000000 1000000000
0

Sample Output

3
0

Source

【思路】

博弈

设v=a1^a2…^an,对于i,如果ai>(v^ai)则先手可以把ai变为v^ai,此时局面必败。累计ans即可。

【代码】

 #include<cstdio>
using namespace std; int n,a[]; int main() {
while(scanf("%d",&n)== && n) {
int v=,ans=;
for(int i=;i<n;i++)
scanf("%d",&a[i]) , v^=a[i];
for(int i=;i<n;i++)
if((v^a[i])<a[i]) ans++;
printf("%d\n",ans);
}
return ;
}

poj 2975 Nim(博弈)的更多相关文章

  1. POJ 2234 Nim博弈

    思路: nim博弈裸题 xor一下 //By SiriusRen #include <cstdio> using namespace std; int n,tmp,xx; int main ...

  2. POJ 2975 Nim 尼姆博弈

    题目大意:尼姆博弈,求先手必胜的情况数 题目思路:判断 ans=(a[1]^a[2]--^a[n]),求ans^a[i] < a[i]的个数. #include<iostream> ...

  3. POJ 2975 Nim(博弈)题解

    题意:已知异或和为0为必败态,异或和不为0为必胜态,问你有几种方法把开局从当前状态转为必败态. 思路:也就是说,我们要选一堆石头,然后从这堆石头拿走一些使剩下的石碓异或和为0.那么只要剩下石堆的异或和 ...

  4. POJ 2975 Nim(博弈论)

    [题目链接] http://poj.org/problem?id=2975 [题目大意] 问在传统的nim游戏中先手必胜策略的数量 [题解] 设sg=a1^a1^a3^a4^………^an,当sg为0时 ...

  5. poj -2975 Nim

      Nim Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4312   Accepted: 1998 Description ...

  6. [原博客] POJ 2975 Nim 统计必胜走法个数

    题目链接题意介绍了一遍Nim取石子游戏,可以看上一篇文章详细介绍.问当前状态的必胜走法个数,也就是走到必败状态的方法数. 我们设sg为所有个数的Xor值.首先如果sg==0,它不可能有必胜走法,输出0 ...

  7. poj 2975 Nim 博弈论

    令ans=a1^a2^...^an,如果需要构造出异或值为0的数, 而且由于只能操作一堆石子,所以对于某堆石子ai,现在对于ans^ai,就是除了ai以外其他的石子 的异或值,如果ans^ai< ...

  8. POJ 2975 Nim(普通nim)

    题目链接 #include<iostream> #include<cstdio> using namespace std; int main() { ]; int sum,cn ...

  9. POJ 2234 Matches Game(Nim博弈裸题)

    Description Here is a simple game. In this game, there are several piles of matches and two players. ...

随机推荐

  1. 一封给“X教授”的回信(讨论Socket通信)

    转载:http://www.cnblogs.com/tianzhiliang/archive/2011/03/02/1969187.html 前几天"X教授"发Email与我讨论S ...

  2. MongoDB的索引

    一.索引详讲 索引是什么,索引就好比一本书的目录,当我们想找某一章节的时候,通过书籍的目录可以很快的找到,所以适当的加入索引可以提高我们查询的数据的速度. 准备工作,向MongoDB中插入20000条 ...

  3. javascript-设置div隐藏

    html code: <div class="title"> <ul id="col02_left_title"> <li> ...

  4. list集合练习一

    package com.java.c.domain; public class Person { private String name; private int age; public Person ...

  5. hdu 1788 Chinese remainder theorem again(最小公倍数)

    Problem Description 我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的: 假设m1,m2,-,mk两两互素,则下面同余方程组: x≡a1(mod m1) x≡a2( ...

  6. Spring MVC 3.2 406 Not Acceptable

    Spring MVC 3.2 406 Not Acceptable 这个报错主要是因为SpringMVC配置文件配置问题. 修改步骤如下: 首先,修改spring-mvc.xsd为 spring-mv ...

  7. Cloudera Impala 之 ORDER BY without LIMIT currently not supported

    ERROR: NotImplementedException: ORDER BY without LIMIT currently not supported   impala中order by 需要l ...

  8. pip assert_source_matches_version(self)版本验证报错Source in %s has version %s, which satisfies requirement %s的解决方式

    在win8.1下为了安装flask模块,开始安装pip,结果发生了上篇博客里面的错误ntpath join(path, *paths) 发生UnicodeDecodeError.解决之后继续发现版本验 ...

  9. C++11老关键字的新含义(auto, using,extern)

    http://blog.csdn.net/cnsword/article/details/8034947 公司可以使用c++11.看大牛的代码模仿使用,所以现在已经不知道什么使用的是c++的语法还是c ...

  10. 《C和指针》章节后编程练习解答参考——6.4

    <C和指针>——6.4 题目: 质数是只能被1和本身整除的整数. 在1到1000之间的质数,在数组中剔除不是质数的数. 解答代码: #include <stdio.h> #de ...