bzoj1007
其实吧,就是一个半平面交,而且不用考虑转回来的情况,所以只要极角排序然后用栈即可
给的是点斜式,比极角很方便
至于完整版的半平面交还没写过,看到再说吧
var a,b,c,q:array[..] of longint;
v:array[..] of boolean;
t,i,n:longint;
procedure swap(var a,b:longint);
var c:longint;
begin
c:=a;
a:=b;
b:=c;
end; procedure sort(l,r: longint);
var i,j,x,y: longint;
begin
i:=l;
j:=r;
x:=a[(l+r) shr ];
y:=b[(l+r) shr ];
repeat
while (a[i]<x) or (a[i]=x) and (b[i]>y) do inc(i);
while (x<a[j]) or (a[j]=x) and (b[j]<y) do dec(j);
if not(i>j) then
begin
swap(a[i],a[j]);
swap(b[i],b[j]);
swap(c[i],c[j]);
inc(i);
j:=j-;
end;
until i>j;
if l<j then sort(l,j);
if i<r then sort(i,r);
end; procedure push(i:longint);
begin
while (t->) do
if ((b[q[t]]-b[i])/(a[i]-a[q[t]])<=(b[q[t]]-b[q[t-]])/(a[q[t-]]-a[q[t]])) then dec(t)
else break; //画图可知,如果栈内最后两条直线L2,L1的交点在新加入的直线的右侧,那么L1一定是不可见的
inc(t);
q[t]:=i;
end; begin
readln(n);
for i:= to n do
begin
readln(a[i],b[i]);
c[i]:=i;
end;
sort(,n);
push();
fillchar(v,sizeof(v),false);
for i:= to n do
if a[i]<>a[i-] then push(i);
for i:= to t do
v[c[q[i]]]:=true;
for i:= to n do
if v[i] then write(i,' ');
writeln;
end.
bzoj1007的更多相关文章
- 【BZOJ1007】水平可见直线(单调栈)
[BZOJ1007]水平可见直线(单调栈) 题解 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的 ...
- 【BZOJ1007】[HNOI2008]水平可见直线 半平面交
[BZOJ1007][HNOI2008]水平可见直线 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见 ...
- BZOJ1007水平可見直線 計算幾何
@[計算幾何] Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于 ...
- [bzoj1007][HNOI2008]水平可见直线_单调栈
水平可见直线 bzoj-1007 HNOI-2008 题目大意:给你n条直线,为你从上往下看能看见多少跳直线. 注释:能看见一条直线,当且仅当这条直线上存在一条长度>0的线段使得这条线段上方没有 ...
- [bzoj1007][HNOI2008][水平可见直线] (斜率不等式)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...
- bzoj1007[HNOI2008]水平可见直线
cycleke神说要用半平面交(其实他也用的凸包),把我吓了一跳,后来发现(看题解)其实可以先按斜率排序,再将最小的两条线入栈,如果其与栈顶元素的交点在上一个点的左边,则将栈顶元素出栈.这是一个开口向 ...
- 半平面交模板(BZOJ1007)
#include<cstdio> #include<algorithm> #define LDB long double using namespace std; ]; str ...
- 【BZOJ1007】【HNOI2008】水平可见直线(斜率排序+单调栈)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2605 Solved: 914[Submit][Stat ...
- 【BZOJ1007】【HNOI2008】水平可见直线
依旧看黄学长代码,不过这回是看完后自己写的 原题: 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例 ...
- 【bzoj1007】[HNOI2008]水平可见直线
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5932 Solved: 2254[Submit][Sta ...
随机推荐
- 用 CSS 隐藏页面元素的 5 种方法
原文链接:用 CSS 隐藏页面元素的 5 种方法,转载请注明来源! 用 CSS 隐藏页面元素有许多种方法.你可以将 opacity 设为 0.将 visibility 设为 hidden.将 disp ...
- [转]从一行代码里面学点JavaScript
现如今,JavaScript无处不在,因此关于JavaScript的新知识也是层出不穷.JavaScript的特点在于,要学习它的语法入门简简单,但是要精通使用它的方式却是一件不容易的事. 来看看下面 ...
- CodeForces 527B
Description Ford Prefect got a job as a web developer for a small company that makes towels. His cur ...
- poj3190 stall revertation
Stall Re ...
- 九度OJ 1163 素数
题目地址:http://ac.jobdu.com/problem.php?pid=1163 题目描述: 输入一个整数n(2<=n<=10000),要求输出所有从1到这个整数之间(不包括1和 ...
- 创建安全的ashx文件,ashx编译
<%@ WebHandler Language="C#" Class="Handler2" %> using System; using Syste ...
- js实现浏览器兼容复制功能
经常看到这样一种效果:就是单击一个按钮,就将某个区域内的内容,复制到了剪切板中.其实这个功能实现起来也不难,核心就是用到了window子对象clipboardData的一个方法:setData()语法 ...
- ASP.NET 学习小记 -- “迷你”MVC实现(1)
ASP.NET 由于采用了管道式设计,具有很好的扩展性.整个ASP.NET MVC应用框架就是通过扩展ASP.NET实现的.通过ASP.NET的管道设计,我们知道,ASP.NET的扩展点主要是体现在H ...
- 认识基本的UI资源
什么是UI精灵(Sprite) 在制作UI时,经常将一些零碎的小的UI资源(比如,一个小箭头,一个按钮等)打包成一张大图,然后在使用时,只使用这个大图中的一部分,那么这一块"被切出来&quo ...
- 素数筛&&欧拉筛
折腾了一晚上很水的数论,整个人都萌萌哒 主要看了欧拉筛和素数筛的O(n)的算法 这个比那个一长串英文名的算法的优势在于没有多次计算一个数,也就是说一个数只筛了一次,主要是在%==0之后跳出实现的,具体 ...