If we take 47, reverse and add, 47 + 74 = 121, which is palindromic.

Not all numbers produce palindromes so quickly. For example,

349 + 943 = 1292,

1292 + 2921 = 4213

4213 + 3124 = 7337

That is, 349 took three iterations to arrive at a palindrome.

Although no one has proved it yet, it is thought that some numbers, like 196, never produce a palindrome. A number that never forms a palindrome through the reverse and add process
is called a Lychrel number. Due to the theoretical nature of these numbers, and for the purpose of this problem, we shall assume that a number is Lychrel until proven otherwise. In addition you are given that for every number below ten-thousand, it will either
(i) become a palindrome in less than fifty iterations, or, (ii) no one, with all the computing power that exists, has managed so far to map it to a palindrome. In fact, 10677 is the first number to be shown to require over fifty iterations before producing
a palindrome: 4668731596684224866951378664 (53 iterations, 28-digits).

Surprisingly, there are palindromic numbers that are themselves Lychrel numbers; the first example is 4994.

How many Lychrel numbers are there below ten-thousand?

NOTE: Wording was modified slightly on 24 April 2007 to emphasise the theoretical nature of Lychrel numbers.

求10000以内的不可按以上方法迭代得出回文的数的个数。

#include <iostream>
#include <string>
using namespace std; string num2str(int n)
{
string ans = "";
while (n)
{
int a = n % 10;
char b = a + '0';
ans = b + ans;
n /= 10;
}
return ans;
} string strplus(string a, string b)
{
int len = a.length(); int flag = 0;
string ans = "";
for (int i = len - 1; i >= 0; i--)
{
int tmp = a[i] + b[i] - '0' - '0' + flag;
flag = tmp / 10;
tmp = tmp % 10;
char p = tmp + '0';
ans = p + ans;
}
if (flag == 1)
ans = '1' + ans;
return ans;
} bool pali(string a)
{
for (int i = 0; i < a.length() / 2; i++)
{
if (a[i] != a[a.length() - 1 - i])
return false;
}
return true;
} bool isLychrel(int n)
{
string a, b;
a = num2str(n);
b.assign(a.rbegin(), a.rend());
for (int i = 1; i <= 50; i++)
{
a = strplus(a, b);
if (pali(a))
return false;
b.assign(a.rbegin(), a.rend());
}
return true;
} int main()
{ int count = 0;
for (int i = 1; i <= 10000; i++)
{
if (isLychrel(i))
count++;
}
cout << count << endl;
system("pause");
return 0;
}

Project Euler:Problem 55 Lychrel numbers的更多相关文章

  1. Project Euler:Problem 88 Product-sum numbers

    A natural number, N, that can be written as the sum and product of a given set of at least two natur ...

  2. Project Euler:Problem 61 Cyclical figurate numbers

    Triangle, square, pentagonal, hexagonal, heptagonal, and octagonal numbers are all figurate (polygon ...

  3. Project Euler:Problem 42 Coded triangle numbers

    The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...

  4. Project Euler:Problem 87 Prime power triples

    The smallest number expressible as the sum of a prime square, prime cube, and prime fourth power is ...

  5. Project Euler:Problem 89 Roman numerals

    For a number written in Roman numerals to be considered valid there are basic rules which must be fo ...

  6. Project Euler:Problem 93 Arithmetic expressions

    By using each of the digits from the set, {1, 2, 3, 4}, exactly once, and making use of the four ari ...

  7. Project Euler:Problem 28 Number spiral diagonals

    Starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral is forme ...

  8. Project Euler:Problem 47 Distinct primes factors

    The first two consecutive numbers to have two distinct prime factors are: 14 = 2 × 7 15 = 3 × 5 The ...

  9. Project Euler:Problem 63 Powerful digit counts

    The 5-digit number, 16807=75, is also a fifth power. Similarly, the 9-digit number, 134217728=89, is ...

随机推荐

  1. java的动态绑定与双分派(规避instanceof)

    1. 动态绑定的概念 指程执行期间(而不是在编译期间)判断所引用对象的实际类型,根据其实际的类型调用其相应的方法 . 例如: package org.demo.clone.demo; public c ...

  2. error_reporting()函数用法

    首先要知道error_reporting()函数是用来设置错误级别并返回当前级别的.它有14个错误级别,如下: 1        E_ERROR          致命的运行时错误. 错误无法恢复过来 ...

  3. 分布式系统间通信之RPC简单Demo(七)

    看似终点,回到起点.第一次接触C#,编写的第一个真正的Demo是基于Socket的简单通信,现在JAVA开始的第一个RPC的Demo也是基于Socket.. 下面通过java原生的序列化,Socket ...

  4. BTREE与HASH的区别

    对于 B-tree 和 hash 数据结构的理解能够有助于预测不同存储引擎下使用不同索引的查询性能的差异,尤其是那些允许你选择 B-tree 或者 hash 索引的内存存储引擎. B-Tree 索引的 ...

  5. javabean 简介

    javabean其实包含多个方面的含义.   Java语言开发的可重用组件 优点:1,代码简洁.2,HTML与Java分离,好维护.3,将常用程序写成可重用组件,避免重复.   特点:1,所有类放在同 ...

  6. iOS的app 中的 埋点

    埋点 就是 挖个坑把 种子埋到土里 然后浇水  等待发芽 埋点就是 ,鬼子要进村,我们埋下地雷 埋点就是 小说中 作者欲扬先抑  或者欲擒故纵  设下的伏笔... 好了,用文学的手法很好的  解释了一 ...

  7. 【Java】理解 UDDI 注册中心的 WSDL

    如何发布和查找 WSDL 服务描述 Web 服务描述语言(WSDL)有多种用法.特别是,根据应用程序的需要,WSDL 在 UDDI 注册中心有好几种使用方法.在这第 1 篇文章中(本系列共三篇),我们 ...

  8. Delphi 指针大全(光看不练是学不会的)

    大家都认为,C语言之所以强大,以及其自由性,很大部分体现在其灵活的指针运用上.因此,说指针是C语言的灵魂,一点都不为过.同时,这种说法也让很多人产生误解,似乎只有C语言的指针才能算指针.Basic不支 ...

  9. TControl的显示函数(5个非虚函数,4个虚函数)和三个例子的执行过程(包括SetParent的例子)

    // 9个显示函数 procedure SetBounds(ALeft, ATop, AWidth, AHeight: Integer); virtual; // 虚函数,important 根据父控 ...

  10. Java switch-case

    首先从原理上来阐述这个问题: switch(表达式){case 常量表达式1:语句1;....case 常量表达式2:语句2;default:语句;}1.default就是如果没有符合的case就执行 ...