Project Euler:Problem 55 Lychrel numbers
If we take 47, reverse and add, 47 + 74 = 121, which is palindromic.
Not all numbers produce palindromes so quickly. For example,
349 + 943 = 1292,
1292 + 2921 = 4213
4213 + 3124 = 7337
That is, 349 took three iterations to arrive at a palindrome.
Although no one has proved it yet, it is thought that some numbers, like 196, never produce a palindrome. A number that never forms a palindrome through the reverse and add process
is called a Lychrel number. Due to the theoretical nature of these numbers, and for the purpose of this problem, we shall assume that a number is Lychrel until proven otherwise. In addition you are given that for every number below ten-thousand, it will either
(i) become a palindrome in less than fifty iterations, or, (ii) no one, with all the computing power that exists, has managed so far to map it to a palindrome. In fact, 10677 is the first number to be shown to require over fifty iterations before producing
a palindrome: 4668731596684224866951378664 (53 iterations, 28-digits).
Surprisingly, there are palindromic numbers that are themselves Lychrel numbers; the first example is 4994.
How many Lychrel numbers are there below ten-thousand?
NOTE: Wording was modified slightly on 24 April 2007 to emphasise the theoretical nature of Lychrel numbers.
求10000以内的不可按以上方法迭代得出回文的数的个数。
#include <iostream>
#include <string>
using namespace std; string num2str(int n)
{
string ans = "";
while (n)
{
int a = n % 10;
char b = a + '0';
ans = b + ans;
n /= 10;
}
return ans;
} string strplus(string a, string b)
{
int len = a.length(); int flag = 0;
string ans = "";
for (int i = len - 1; i >= 0; i--)
{
int tmp = a[i] + b[i] - '0' - '0' + flag;
flag = tmp / 10;
tmp = tmp % 10;
char p = tmp + '0';
ans = p + ans;
}
if (flag == 1)
ans = '1' + ans;
return ans;
} bool pali(string a)
{
for (int i = 0; i < a.length() / 2; i++)
{
if (a[i] != a[a.length() - 1 - i])
return false;
}
return true;
} bool isLychrel(int n)
{
string a, b;
a = num2str(n);
b.assign(a.rbegin(), a.rend());
for (int i = 1; i <= 50; i++)
{
a = strplus(a, b);
if (pali(a))
return false;
b.assign(a.rbegin(), a.rend());
}
return true;
} int main()
{ int count = 0;
for (int i = 1; i <= 10000; i++)
{
if (isLychrel(i))
count++;
}
cout << count << endl;
system("pause");
return 0;
}
Project Euler:Problem 55 Lychrel numbers的更多相关文章
- Project Euler:Problem 88 Product-sum numbers
A natural number, N, that can be written as the sum and product of a given set of at least two natur ...
- Project Euler:Problem 61 Cyclical figurate numbers
Triangle, square, pentagonal, hexagonal, heptagonal, and octagonal numbers are all figurate (polygon ...
- Project Euler:Problem 42 Coded triangle numbers
The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...
- Project Euler:Problem 87 Prime power triples
The smallest number expressible as the sum of a prime square, prime cube, and prime fourth power is ...
- Project Euler:Problem 89 Roman numerals
For a number written in Roman numerals to be considered valid there are basic rules which must be fo ...
- Project Euler:Problem 93 Arithmetic expressions
By using each of the digits from the set, {1, 2, 3, 4}, exactly once, and making use of the four ari ...
- Project Euler:Problem 28 Number spiral diagonals
Starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral is forme ...
- Project Euler:Problem 47 Distinct primes factors
The first two consecutive numbers to have two distinct prime factors are: 14 = 2 × 7 15 = 3 × 5 The ...
- Project Euler:Problem 63 Powerful digit counts
The 5-digit number, 16807=75, is also a fifth power. Similarly, the 9-digit number, 134217728=89, is ...
随机推荐
- WPF WebBrowser 不可见问题的解析[转]
问题概述: 1.在Xaml中加入WebBrowser(不论是WPF中的控件,还是Winform中的控件) 2.设置Window Background="Transparent" A ...
- CentOS 6.8安装Python2.7.13
查看当前系统中的 Python 版本 python --version 返回 Python 2.6.6 为正常. 检查 CentOS 版本 cat /etc/redhat-release 返回 Cen ...
- Rewrite的QSA是什么意思?
原版的英文: When the replacement URI contains a query string, the default behavior of RewriteRule is to d ...
- [cocoapods速成] cocoapods的基本用法和自制 podspec
1 安装方法 主要命令: sudo gem install cocoapods ------------------------------------------------------------ ...
- 关于ios object-c 类别-分类 category 的静态方法与私有变量,协议 protocol
关于ios object-c 类别-分类 category 的静态方法与私有变量,协议 protocol 2014-02-18 19:57 315人阅读 评论(0) 收藏 举报 1.category, ...
- Ext.js form 表单提交问题
var form = new Ext.form.FormPanel({ labelAlign : 'right', border : false, bodyStyle : 'background-co ...
- Linux Shell脚本Ldd命令原理及使用方法
1.首先ldd不是一个可执行程序,而只是一个shell脚本2.ldd能够显示可执行模块的dependency,其原理是通过设置一系列的环境变量如下:LD_TRACE_LOADED_OBJECTS.LD ...
- php socket 通信
Socket扩展是基于流行的BSD sockets,实现了和socket通讯功能的底层接口,它可以和客户端一样当做一个socket服务器. 想了解更通用的客户端socket接口,请看 stream_s ...
- 一段JAVA签名算法的PHP改写
源代码是这样的: public class AuthorizationSignature { public static String createSignature(String verb, Str ...
- mysq 日期相减
mysql> desc test200; +---------------+----------+------+-----+---------+-------+ | Field | Type | ...