Description

给你一个无向图,N(N<=500)个顶点, M(M<=5000)条边,每条边有一个权值Vi(Vi<30000)。给你两个顶点S和T,求一条路径,使得路径上最大边和最小边的比值最小。如果S和T之间没有路径,输出”IMPOSSIBLE”,否则输出这个比值,如果需要,表示成一个既约分数。 备注: 两个顶点之间可能有多条路径。

Input

第一行包含两个正整数,N和M。 下来的M行每行包含三个正整数:x,y和v。表示景点x到景点y之间有一条双向公路,车辆必须以速度v在该公路上行驶。 最后一行包含两个正整数s,t,表示想知道从景点s到景点t最大最小速度比最小的路径。s和t不可能相同。

Output

如果景点s到景点t没有路径,输出“IMPOSSIBLE”。否则输出一个数,表示最小的速度比。如果需要,输出一个既约分数。

Sample Input

【样例输入1】
4 2
1 2 1
3 4 2
1 4
【样例输入2】
3 3
1 2 10
1 2 5
2 3 8
1 3
【样例输入3】
3 2
1 2 2
2 3 4
1 3

Sample Output

【样例输出1】
IMPOSSIBLE
【样例输出2】
5/4
【样例输出3】
2

HINT

【数据范围】
1<  N < = 500
1 < = x, y < = N,0 < v < 30000,x ≠ y
0 < M < =5000

Source

【分析】

凑数题。

 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
#include <utility>
#include <iomanip>
#include <string>
#include <cmath>
#include <queue>
#include <map> const int MAXN = + ;
const int MAXM = + ;
using namespace std;
struct EDGE{
int u, v ,w;
bool operator < (EDGE B)const{
return w < B.w;
}
}edge[MAXM];
int n, m, parent[MAXN];
int s, t; int find(int x){return parent[x] < ? x:parent[x] = find(parent[x]);}
void merge(int x, int y){
if (parent[x] > parent[y]){
parent[y] += parent[x];
parent[x] = y;
}else{
parent[x] += parent[y];
parent[y] = x;
}
}
void init(){
scanf("%d%d", &n, &m);
memset(parent, -, sizeof(parent));
for (int i = ; i <= m; i++){
scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].w);
}
scanf("%d%d", &s, &t);
sort(edge + , edge + + m);
}
int gcd(int a, int b){return b == ? a:gcd(b, a % b);}
void work(){
int A = , B = ;
//枚举边长最小的边
for (int i = ; i <= m; i++){
memset(parent, -, sizeof(parent));
int j;
for (j = i; j <= m; j++){
int u = edge[j].u, v = edge[j].v;
u = find(u); v = find(v);
if (u != v) merge(u, v);
if (find(s) == find(t)) break;
}
if (j <= m){
if (edge[i].w * A > edge[j].w * B){
A = edge[j].w;
B = edge[i].w;
}
}
}
if (A == && B == ) {printf("IMPOSSIBLE\n");return;}
if (A % B == ) printf("%d\n", A / B);
else printf("%d/%d", A / gcd(A, B), B / gcd(A, B));
} int main(){
int T;
#ifdef LOCAL
freopen("data.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
init();
work();
return ;
}

【BZOJ1050】【枚举+并查集】旅行comf的更多相关文章

  1. BZOJ 1050: [HAOI2006]旅行comf(枚举+并查集)

    [HAOI2006]旅行comf Description 给你一个无向图,N(N<=500)个顶点, M(M<=5000)条边,每条边有一个权值Vi(Vi<30000).给你两个顶点 ...

  2. bzoj 1050: [HAOI2006]旅行comf【枚举+并查集】

    m是5000,就想到了直接枚举比例 具体做法是是先把边按照边权从小到大排序,然后先枚举最小边权,再枚举最大边权,就是从最小边权里一个一个加进并查集里,每次查st是否联通,联通则退出,更新答案 #inc ...

  3. POJ 1944 Fiber Communications (枚举 + 并查集 OR 线段树)

    题意 在一个有N(1 ≤ N ≤ 1,000)个点环形图上有P(1 ≤ P ≤ 10,000)对点需要连接.连接只能连接环上相邻的点.问至少需要连接几条边. 思路 突破点在于最后的结果一定不是一个环! ...

  4. bzoj 4078: [Wf2014]Metal Processing Plant【二分+2-SAT+枚举+并查集】

    枚举从大到小s1,二分s2(越大越有可能符合),2-SAT判断,ans取min 思路倒是挺简单的,就是二分的时候出了比较诡异的问题,只能二分s2的值,不能在数组上二分... 有个优化,就是当不是二分图 ...

  5. nyoj 711 枚举+并查集

     #include<stdio.h>//从大到小不断枚举边直到找到s-t的路径,判断从s可以到t可以用并查集来判断 #include<stdlib.h>//枚举最大的一条边肯定 ...

  6. SGU 128. Snake --- 暴力枚举+并查集+贪心+计算几何

    <传送门> 128. Snake time limit per test: 0.25 sec. memory limit per test: 4096 KB There are N poi ...

  7. [BZOJ1050][HAOI2006]旅行comf 枚举+并查集

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1050 将边排序,枚举边权最小的边,依次加边直到S和T连通,更新答案. #include&l ...

  8. HDU 1598 find the most comfortable road(枚举+并查集,类似于最小生成树)

    一开始想到用BFS,写了之后,发现有点不太行.网上查了一下别人的解法. 首先将边从小到大排序,然后从最小边开始枚举,每次取比它大的边,直到start.end属于同一个集合,即可以连通时停止.过程类似于 ...

  9. BZOJ 1050 枚举+并查集

    思路: 枚举最大边 像Kruskal一样加边 每回更新一下 就搞定了- //By SiriusRen #include <cstdio> #include <cstring> ...

随机推荐

  1. 硬盘安装RedHat Enterprise Linux 6(转载)

    准备条件: (1)RedHat Enterprise Linux 6安装镜像            下载见文章末尾 (2)grub文件(用于引导安装)                         ...

  2. Google Map API 学习2-界面展示

  3. (转载)Android开发者必知的开发资源

    (转载)http://www.importnew.com/3988.html 随着Android平台市场份额的持续猛增 ,越来越多的开发者开始投入Android应用程序的开发大潮.如果您是一位2013 ...

  4. JAVA中ProcessBuilder执行cmd命令找不到路径的解决方法

    今天遇到了一个很奇葩的问题,终于解决了,记一下,以做备忘. 前提条件:工程路径在D盘下 cmd要执行的可执行文件路径不在D盘下 然后...出事了............................ ...

  5. net user命令

    net user net user 用户名 net user 用户名 密码 /add net user 用户名 /del net localgroup administrators net local ...

  6. octopress 如何添加youku视频和本地视频(octopress how to add a youku video or a local video)

    用octopress 官方的video tag 可以添加视频,但是由于国内经常使用的是youku,所以下面是如何添加youku视频到octopress的教程. 首先添加youku.rb文件到路径:oc ...

  7. JVM分代垃圾回收策略的基础概念

    由于不同对象的生命周期不一样,因此在JVM的垃圾回收策略中有分代这一策略.本文介绍了分代策略的目标,如何分代,以及垃圾回收的触发因素. 文章总结了JVM垃圾回收策略为什么要分代,如何分代,以及垃圾回收 ...

  8. HTTP协议的特点

    HTTP协议的主要特点可概括如下: 1.支持客户/服务器模式.2.简单快速:客户向服务器请求服务时,只需传送请求方法和路径.请求方法常用的有GET.HEAD.POST.每种方法规定了客户与服务器联系的 ...

  9. bzoj3675: [Apio2014]序列分割

    留坑 为什么别人家的斜率优化跟我一点都不一样! 为什么斜率都要变成正的... 为什么要那么推式子 为什么不能直接做啊..... 为什么不把0去掉去秒WA啊 为什么叉积去了0也过不了啊 woc啊 #in ...

  10. NIO设置SO_LINGER引发的异常

    欢迎关注Github:https://github.com/teaey/ ### 背景 银时跟我讲,想从 Netty3迁移到Netty4 . 问其原因是由于 Netty3在容器里会报错,错误堆栈: j ...