如图就是Kuskal算法
将图中的每条边按照权值从小到大排序,每次加起来就行,注意的是不要形成回路;
重点是如何用代码实现不能形成回路
看代码;
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
#define MaxSize 100
using namespace std;
int tu[MaxSize][MaxSize];
struct Edge//储存边的两个顶点以及边的权值
{
    int begin1;
    int end1;
    int weight;
};
bool comp(Edge a,Edge b)
{
    return a.weight<b.weight;
}
void Kruskal(int n)
{
    int vest[MaxSize];
    Edge E[MaxSize];
    int k=0;
    for(int i=1;i<=n;i++)
  for(int j=1;j<=n;j++)
        if(tu[i][j]!=0)
    {
        E[k].begin1=i;//将这条边的一个顶点储存
        E[k].end1=j;//将这条边的另一个顶点储存
        E[k].weight=tu[i][j];//将边的权值储存
        k++;//边的个数
    }
    sort(E,E+k,comp);//按照边的权值从大到小排序
    for(int i=0;i<=n;i++)
        vest[i]=i;//重点:将每个顶点初始化,看作是各不相同的集合
    k=1;
    int j=1,u1,v1,sn1,sn2;
    int sum=0;
    while(k<n)
    {
        u1=E[j].begin1;
        v1=E[j].end1;
        sn1=vest[u1];
        sn2=vest[v1];//此条边的两个点
        if( sn1!=sn2)//两个点不属于一个集合
        {
 
            k++;
           sum+=E[j].weight;
            printf("< %d  ,  %d >:   %d      sum=%d\n", u1-1,v1-1,E[j].weight,sum);
           for(int i=1;i<=n;i++)
                if(vest[i]==sn2)
                vest[i]=sn1;//将找过的边的顶点都赋予相同的值,代表在一个集合内,此段代码将所有连在一起的顶点都标志成一个相同的值即                           vest[顶点编号]都是相同的;
        }
        j++;//遍历下一条边
    }
}
int  main()
{
    int n;
    scanf("%d",&n);
for(int i=1;i<=n;i++)
    for(int j=1;j<=n;j++)
    scanf("%d",&tu[i][j]);
    Kruskal(n);
 
    return 0;
}
/*
6
0 6 1 5 9999 9999
6 0 5 9999 3 9999
1 5 0 5 6 4
5 9999 5 0 9999 2
9999 3 6 9999 0 6
9999 9999 4 2 6 0
 
 
*/
 
 
 
 
 
 
 
 
 
 
 
 

最小生成树问题(Kruskal 算法)(克鲁斯卡尔)的更多相关文章

  1. [模板] Kruskal算法 && 克鲁斯卡尔重构树

    克鲁斯卡尔重构树 发现没把板子放上来... 现在放一下 克鲁斯卡尔算法的正确性是利用反证法证明的. 简要地说, 就是如果不加入当前权值最小的边 \(e_1\), 那么之后加入的边和这条边会形成一个环. ...

  2. Kruskal算法 克鲁斯卡尔

    30行 #include <iostream> #include <algorithm> using namespace std; int f[5001],n,m,ans=0, ...

  3. 最小生成树——Kruskal(克鲁斯卡尔)算法

    [0]README 0.1) 本文总结于 数据结构与算法分析, 源代码均为原创, 旨在 理解 Kruskal(克鲁斯卡尔)算法 的idea 并用 源代码加以实现: 0.2)最小生成树的基础知识,参见 ...

  4. 数据结构与算法——克鲁斯卡尔(Kruskal)算法

    目录 应用场景-公交站问题 克鲁斯卡尔算法介绍 克鲁斯卡尔算法图解 克鲁斯卡尔算法分析 如何判断回路? 代码实现 无向图构建 克鲁斯卡尔算法实现 获取一个点的终点解释 应用场景-公交站问题 某城市新增 ...

  5. 最小生成树问题---Prim算法与Kruskal算法实现(MATLAB语言实现)

    2015-12-17晚,复习,甚是无聊,阅<复杂网络算法与应用>一书,得知最小生成树问题(Minimum spanning tree)问题.记之. 何为树:连通且不含圈的图称为树. 图T= ...

  6. 最小生成树问题------------Prim算法(TjuOj_1924_Jungle Roads)

    遇到一道题,简单说就是找一个图的最小生成树,大概有两种常用的算法:Prim算法和Kruskal算法.这里先介绍Prim.随后贴出1924的算法实现代码. Prim算法 1.概览 普里姆算法(Prim算 ...

  7. 最小生成树问题---Prim算法学习

    一个具有n个节点的连通图的生成树是原图的最小连通子集,它包含了n个节点和n-1条边.若砍去任一条边,则生成树变为非连通图:若增加一条边,则在图中形成一条回路.本文所写的是一个带权的无向连通图中寻求各边 ...

  8. Prim算法和Kruskal算法介绍

    一.Prim算法 普利姆(Prim)算法适用于求解无向图中的最小生成树(Minimum Cost Spanning Tree).下面是Prim算法构造最小生成树的过程图解.              ...

  9. 最小生成树,Prim算法与Kruskal算法,408方向,思路与实现分析

    最小生成树,Prim算法与Kruskal算法,408方向,思路与实现分析 最小生成树,老生常谈了,生活中也总会有各种各样的问题,在这里,我来带你一起分析一下这个算法的思路与实现的方式吧~~ 在考研中呢 ...

  10. 最小生成树之克鲁斯卡尔(Kruskal)算法

    学习最小生成树算法之前我们先来了解下 下面这些概念: 树(Tree):如果一个无向连通图中不存在回路,则这种图称为树. 生成树 (Spanning Tree):无向连通图G的一个子图如果是一颗包含G的 ...

随机推荐

  1. 拦截器getmodel方法什么时候被调用(没搞懂有什么鸟用,自己搭的项目中用到了这个)

    拦截器是Struts2最强大的特性之一,它是一种可以让用户在Action执行之前和Result执行之后进行一些功能处理的机制.Struts2 的预定义拦截器 modelDriven 如果action实 ...

  2. for循环,如何结束多层for循环

    采用标签方式跳出,指定跳出位置, a:for(int i=0;i<n;i++) { b:for(int j=0;j<n;j++) { if(n=0) { break a; } } }

  3. tableView尾部多处一部分空白高度

    问题出现的原因:创建tableView时使用的style是UITableViewStylePlain 解决办法: 在创建tableView时,self.automaticallyAdjustsScro ...

  4. java 从jar包中读取资源文件

    在代码中读取一些资源文件(比如图片,音乐,文本等等),在集成环境(Eclipse)中运行的时候没有问题.但当打包成一个可执行的jar包(将资源文件一并打包)以后,这些资源文件找不到,如下代码: Jav ...

  5. 24种设计模式--代理模式【Proxy Pattern】

    什么是代理模式呢?我很忙,忙的没空理你,那你要找我呢就先找我的代理人吧,那代理人总要知道被代理人能做哪些事情不能做哪些事情吧,那就是两个人具备同一个接口,代理人虽然不能干活,但是被代理的人能干活呀. ...

  6. javascript——函数内部属性

    <script type="text/javascript"> //在函数内部有两个特殊的属性:arguments 和 this.arguments是一个类数组对象,包 ...

  7. chromedriver release note

    ----------ChromeDriver v2.25 (2016-10-25)---------- Supports Chrome v53-55 Resolved issue 1547: Chro ...

  8. PHP面向对象(OOP):克隆对象__clone()方法

    有的时候我们需要在一个项目里面,使用两个或多个一样的对象,如果你使用“new”关键字重新创建对象的话,再赋值上相同的属性,这样做比较烦琐而且也容易出错,所以要根据一个对象完全克隆出一个一模一样的对象, ...

  9. PHPCMS收集标签使用

    调用子栏目(在栏目首页模板需要用到) {pc:content action="category" catid="$catid" num="25&quo ...

  10. QLineEdit

    The QLineEdit widget is a one-line text editor. Header: #include <QLineEdit> qmake: QT += widg ...