Matt, a famous adventurer who once defeated a pack of dire wolves alone, found a lost court. Matt finds that there are N fluorescent lights which seem to be the stars from the firmament. What’s more, there are M switches that control these fluorescent lights. Each switch is connected to a group of lights. When Matt touches a switch, all the lights connected to it will change their states (turning the dark on, turning the bright off).

Initially, all the fluorescent lights are dark. For each switch, Matt will touch it with probability 1 .

As a curious gentleman, Matt wants to calculate E[X3], where X represents the number of bright lights at the end, E[X3] represents the expectation of cube of X.

 

Input

The first line contains only one integer T , which indicates the number of test cases.

For each test case, the first line contains N, M (1 ≤ N, M ≤ 50), denoting the number of fluorescent lights (numbered from 1 to N ) and the number of switches (numbered from 1 to M ).

M lines follow. The i-th line begins with an integer Ki (1 ≤ Ki ≤ N ). Ki distinct integers lij(1 ≤ lij ≤ N ) follow, denoting the fluorescent lights that the i-th switch controls.

 

Output

For each test case, output a single line “Case #x: y”, where x is the case number (starting from 1) and y is the answer. To avoid rounding error, the answer you should output is:

E[X3] × 2M mod (109 + 7)

 

Sample Input

2
2 2
1 1
2 1 2
3 1
3 1 2 3

Sample Output

Case #1: 10
Case #2: 27

Hint

For the first sample, there’re 4 possible situations: All the switches is off, no light is bright, X^3 = 0. Only the first switch is on, the first light is bright, X^3 = 1. Only the second switch is on, all the lights are bright, X^3 = 8. All the switches is on, the second lights are bright, X^3 = 1. Therefore, the answer is E[X^3] × 2^2 mod (10^9 + 7) = 10. For the second sample, there’re 2 possible situations: The switches is off, no light is bright, X^3 = 0. The switches is on, all the lights are bright, X^3 = 27. Therefore, the answer is E[X^3] × 2^1 mod (10^9 + 7) = 27.
  
  这道题就是对其计数。
  发现每个情况,假设有x1,x2,…,xk,k个灯亮,那么答案就是k³,答案可以这样计:有三排同样的,作相同的变换,每次各选定一个灯,看最后是否全亮,是则对答案有1的贡献。
  现在先枚举i,j,k三个灯,再DP即可。
 #include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int N=,Mod=(int)1e9+;
typedef long long LL;
LL dp[N][],op[N][N];
int T,cas,n,m;LL ans;
int main(){
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
memset(op,,sizeof(op));
for(int i=,k,x;i<=m;i++){
scanf("%d",&k);
while(k--){
scanf("%d",&x);
op[i][x]=;
}
}
ans=;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
for(int k=;k<=n;k++){
memset(dp,,sizeof(dp));
dp[][]=;
for(int t=;t<=m;t++){
for(int p=;p<=;p++)
dp[t][p]=dp[t-][p];
int go=;
if(op[t][k])go+=;
if(op[t][j])go+=;
if(op[t][i])go+=;
for(int p=;p<=;p++)
(dp[t][p^go]+=dp[t-][p])%=Mod;
}
(ans+=dp[m][])%=Mod;
}
printf("Case #%d: %lld\n",++cas,ans);
}
return ;
}

动态规划(DP计数):HDU 5117 Fluorescent的更多相关文章

  1. HDU - 5117 Fluorescent(状压dp+思维)

    原题链接 题意 有N个灯和M个开关,每个开关控制着一些灯,如果按下某个开关,就会让对应的灯切换状态:问在每个开关按下与否的一共2^m情况下,每种状态下亮灯的个数的立方的和. 思路1.首先注意到N< ...

  2. HDU 5117 Fluorescent (数学+状压DP)

    题意:有 n 个灯,初始状态都是关闭,有m个开关,每个开关都控制若干个.问在m个开关按下与否的2^m的情况中,求每种情况下亮灯数量的立方和. 析:首先,如果直接做的话,时间复杂度无法接受,所以要对其进 ...

  3. HDU 5117 Fluorescent

    题目链接:HDU-5117 题意为有n盏灯,m个开关,每个开关控制着\( k_{i} \)灯.X为最后亮着的灯的个数,要求出\( E(X^{3} ) * 2^{M} mod (10^9 + 7) \) ...

  4. 动态规划(DP计数):HDU 5116 Everlasting L

    Matt loves letter L.A point set P is (a, b)-L if and only if there exists x, y satisfying:P = {(x, y ...

  5. HDU 4055 The King’s Ups and Downs(DP计数)

    题意: 国王的士兵有n个,每个人的身高都不同,国王要将他们排列,必须一高一矮间隔进行,即其中的一个人必须同时高于(或低于)左边和右边.问可能的排列数.例子有1千个,但是最多只算到20个士兵,并且20个 ...

  6. HDU 4055 Number String(DP计数)

    题意: 给你一个含n个字符的字符串,字符为'D'时表示小于号,字符为“I”时表示大于号,字符为“?”时表示大小于都可以.比如排列 {3, 1, 2, 7, 4, 6, 5} 表示为字符串 DIIDID ...

  7. 动态规划dp

    一.概念:动态规划dp:是一种分阶段求解决策问题的数学思想. 总结起来就一句话:大事化小,小事化了 二.例子 1.走台阶问题 F(10):10级台阶的走法数量 所以:F(10)=F(9)+F(8) F ...

  8. 【POJ1952】逢低吸纳 dp+计数

    题目大意:给定一个有 N 个数的序列,求其最长下降子序列的长度,并求出有多少种不同的最长下降子序列.(子序列各项数值相同视为同一种) update at 2019.4.3 题解:求最长下降子序列本身并 ...

  9. 算法-动态规划DP小记

    算法-动态规划DP小记 动态规划算法是一种比较灵活的算法,针对具体的问题要具体分析,其宗旨就是要找出要解决问题的状态,然后逆向转化为求解子问题,最终回到已知的初始态,然后再顺序累计各个子问题的解从而得 ...

随机推荐

  1. Object-C属性(Properties)

    前面我们写了caption和photographer的访问方法,你可能也注意到了,那些代码很简单,应该可以写成具有更普遍意义的形式. 属性是Object-C的一个特性,它允许我们自动生成访问器,同时还 ...

  2. html表格 第五节

    表格: <html> <head> <title>表格实例</title> </head> <body> <center& ...

  3. Android中View绘制流程以及invalidate()等相关方法分析(转载的文章,出处在正文已表明)

    转载请注明出处:http://blog.csdn.net/qinjuning 前言: 本文是我读<Android内核剖析>第13章----View工作原理总结而成的,在此膜拜下作者 .同时 ...

  4. 在.NET 应用程序设计中如何选择Class, Abstract Class and Interface

    关键字: Type– 类型 Class - 类 Abstract - 抽象的 Interface - 接口 Member - 成员 Method - 方法 Property - 属性 预备知识:在阅读 ...

  5. HttpHandler与HttpModule及实现文件下载

    HttpHandler:处理请求(Request)的信息和发送响应(Response).HttpModule:通过Http Module向Http请求输出流中写入文字,httpmodule先执行 它们 ...

  6. 《sed的流艺术之二》-linux命令五分钟系列之二十二

    本原创文章属于<Linux大棚>博客,博客地址为http://roclinux.cn.文章作者为rocrocket. 为了防止某些网站的恶性转载,特在每篇文章前加入此信息,还望读者体谅. ...

  7. 网站开发常用jQuery插件总结(13)定位插件scrollto

    一.scrollto插件功能 scrollto用于定位页面中元素的位置,并使滚动条滚动到当前元素. 二.scrollto官方地址 https://github.com/flesler/jquery.s ...

  8. ubuntu sudo

    sudo(substitute user 或者 superuser do),是一种程序, 以允许用户通过安全的方式使用特殊的权限运行程序(通常为系统的超级 用户) 语法 sudo [-bhHpV][- ...

  9. node-webkit:开发桌面+WEB混合型应用的神器

    顾名思义, node -webkit就是 node js+webkit. 这样做的好处显而易见,核心奥义在于,用 node js来进行本地化调用,用webkit来解析和执行HTML+JS. 快速上手 ...

  10. php类的属性

    属性声明是由关键字 public,protected 或者 private 开头,后面跟一个普通的变量声明来组成.属性的变量可以设置初始化的默认值,默认值必须是常量. class Car { //定义 ...