矩阵的掩码操作很简单。其思想是:根据掩码矩阵(也称作核)重新计算图像中每个像素的值。掩码矩阵中的值表示近邻像素值(包括该像素自身的值)对新像素值有多大影响。从数学观点看,我们用自己设置的权值,对像素邻域内的值做了个加权平均。

测试用例

思考一下图像对比度增强的问题。我们可以对图像的每个像素应用下面的公式:

上面那种表达法是公式的形式,而下面那种是以掩码矩阵表示的紧凑形式。使用掩码矩阵的时候,我们先把矩阵中心的元素(上面的例子中是(0,0)位置的元素,也就是5)对齐到要计算的目标像素上,再把邻域像素值和相应的矩阵元素值的乘积加起来。虽然这两种形式是完全等价的,但在大矩阵情况下,下面的形式看起来会清楚得多。

现在,我们来看看实现掩码操作的两种方法。一种方法是用基本的像素访问方法,另一种方法是用 filter2D 函数。

基本方法

下面是实现了上述功能的函数:

void Sharpen(const Mat& myImage,Mat& Result)
{
CV_Assert(myImage.depth() == CV_8U); // 仅接受uchar图像 Result.create(myImage.size(),myImage.type());
const int nChannels = myImage.channels(); for(int j = 1 ; j < myImage.rows-1; ++j)
{
const uchar* previous = myImage.ptr<uchar>(j - 1);
const uchar* current = myImage.ptr<uchar>(j );
const uchar* next = myImage.ptr<uchar>(j + 1); uchar* output = Result.ptr<uchar>(j); for(int i= nChannels;i < nChannels*(myImage.cols-1); ++i)
{
*output++ = saturate_cast<uchar>(5*current[i]
-current[i-nChannels] - current[i+nChannels] - previous[i] - next[i]);
}
} Result.row(0).setTo(Scalar(0));
Result.row(Result.rows-1).setTo(Scalar(0));
Result.col(0).setTo(Scalar(0));
Result.col(Result.cols-1).setTo(Scalar(0));
}

刚进入函数的时候,我们要确保输入图像是无符号字符类型的。为了做到这点,我们使用了 CV_Assert 函数。若该函数括号内的表达式为false,则会抛出一个错误。

CV_Assert(myImage.depth() == CV_8U);  // 仅接受uchar图像

然后,我们创建了一个与输入有着相同大小和类型的输出图像。在 图像矩阵是如何存储在内存之中的? 一节可以看到,根据图像的通道数,我们有一个或多个子列。我们用指针在每一个通道上迭代,因此通道数就决定了需计算的元素总数。

Result.create(myImage.size(),myImage.type());
const int nChannels = myImage.channels();

利用C语言的[]操作符,我们能简单明了地访问像素。因为要同时访问多行像素,所以我们获取了其中每一行像素的指针(分别是前一行、当前行和下一行)。此外,我们还需要一个指向计算结果存储位置的指针。有了这些指针后,我们使用[]操作符,就能轻松访问到目标元素。为了让输出指针向前移动,我们在每一次操作之后对输出指针进行了递增(移动一个字节):

for(int j = 1 ; j < myImage.rows-1; ++j)
{
const uchar* previous = myImage.ptr<uchar>(j - 1);
const uchar* current = myImage.ptr<uchar>(j );
const uchar* next = myImage.ptr<uchar>(j + 1); uchar* output = Result.ptr<uchar>(j); for(int i= nChannels;i < nChannels*(myImage.cols-1); ++i)
{
*output++ = saturate_cast<uchar>(5*current[i]
-current[i-nChannels] - current[i+nChannels] - previous[i] - next[i]);
}
}

在图像的边界上,上面给出的公式会访问不存在的像素位置(比如(0,-1))。因此我们的公式对边界点来说是未定义的。一种简单的解决方法,是不对这些边界点使用掩码,而直接把它们设为0:

Result.row(0).setTo(Scalar(0));             // 上边界
Result.row(Result.rows-1).setTo(Scalar(0)); // 下边界
Result.col(0).setTo(Scalar(0)); // 左边界
Result.col(Result.cols-1).setTo(Scalar(0)); // 右边界

filter2D函数

滤波器在图像处理中的应用太广泛了,因此OpenCV也有个用到了滤波器掩码(某些场合也称作核)的函数。不过想使用这个函数,你必须先定义一个表示掩码的 Mat 对象:

Mat kern = (Mat_<char>(3,3) <<  0, -1,  0,
-1, 5, -1,
0, -1, 0);

然后调用 filter2D 函数,参数包括输入、输出图像以及用到的核:

filter2D(I, K, I.depth(), kern );

它还带有第五个可选参数——指定核的中心,和第六个可选参数——指定函数在未定义区域(边界)的行为。使用该函数有一些优点,如代码更加清晰简洁、通常比 自己实现的方法 速度更快(因为有一些专门针对它实现的优化技术)等等。例如,我测试的滤波器方法仅花了13毫秒,而前面那样自己实现迭代方法花了约31毫秒,二者有着不小差距。

示例:

你可以从 here 下载这个示例的源代码,也可浏览OpenCV源代码库的示例目录samples/cpp/tutorial_code/core/mat_mask_operations/mat_mask_operations.cpp

OpenCV学习笔记:矩阵的掩码操作的更多相关文章

  1. 《学习opencv》笔记——矩阵和图像操作——cvCalcCovarMatrix,cvCmp and cvCmpS

    矩阵和图像的操作 (1)cvCalcCovarMatrix函数 其结构 void cvCalcCovarMatrix(计算给定点的均值和协方差矩阵 const CvArr** vects,//给定向量 ...

  2. 《学习opencv》笔记——矩阵和图像操作——cvSetIdentity,cvSolve,cvSplit,cvSub,cvSubS and cvSubRS

    矩阵和图像的操作 (1)cvSetIdentity函数 其结构 void cvSetIdentity(//将矩阵行与列相等的元素置为1.其余元素置为0 CvArr* arr//目标矩阵 ); 实例代码 ...

  3. 《学习opencv》笔记——矩阵和图像操作——cvAnd、cvAndS、cvAvg and cvAvgSdv

    矩阵和图像的操作 (1)cvAnd函数 其结构 void cvAnd( //将src1和src2按像素点取"位与运算" const CvArr* src1,//第一个矩阵 cons ...

  4. 《学习opencv》笔记——矩阵和图像操作——cvAbs,cvAbsDiff and cvAbsDiffS

    矩阵和图像的操作 (1)cvAbs,cvAbsdiff,cvAbsDiffS 它们的结构为: void cvAbs( //取src中元素的绝对值,写到dst中 const CvArr* src, co ...

  5. 《学习opencv》笔记——矩阵和图像操作——cvInRange,cvInRangeS,cvInvert and cvMahalonobis

    矩阵和图像的操作 (1)cvInRange函数 其结构 void cvInRange(//提取图像中在阈值中间的部分 const CvArr* src,//目标图像 const CvArr* lowe ...

  6. 《学习opencv》笔记——矩阵和图像操作——cvCrossProduct and cvCvtColor

    矩阵和图像的操作 (1)cvCrossProduct函数 其结构 void cvCrossProdust(//计算两个三维向量的叉积 const CvArr* src1, const CvArr* s ...

  7. 《学习opencv》笔记——矩阵和图像操作——cvConvertScale,cvConvertScaleAbs,cvCopy and cvCountNonZero

    矩阵和图像的操作 (1)cvConvertScale函数 其结构: void cvConvertScale( //进行线性变换,将src乘scale加上shift保存到dst const CvArr* ...

  8. opencv学习笔记(05)——操作相邻区域

    下面的例子以灰度图像为例: #include <opencv2\highgui\highgui.hpp> #include <opencv2\imgproc\imgproc.hpp& ...

  9. opencv学习笔记(01)——操作图像的像素

    #include <opencv2\core\core.hpp> #include <opencv2\highgui\highgui.hpp> #include <ope ...

随机推荐

  1. 全面认识网络诊断命令功能与参数——netsh diagnostic命令

    netsh diagnostic是网络诊断命令,主要检测网络连接和服务器连接的状态.    注意:netsh不能在Window2000以下系统中使用.案例1:使用netsh diagnostic命令检 ...

  2. sql的游标使用(转)

    游标是邪恶的! 在关系数据库中,我们对于查询的思考是面向集合的.而游标打破了这一规则,游标使得我们思考方式变为逐行进行.对于类C的开发人员来着,这样的思考方式会更加舒服. 正常面向集合的思维方式是: ...

  3. ODBC连接MySQL出现"E_FAIL"错误

    ODBC不能处理这种格式的数据:0000-00-00,将其更新为正常的时间即可解决

  4. WTL 中CComboBoxEx显示不了的问题

    在使用WTL的CComboBoxEx时,InsertItem之后,运行程序,ComboBox显不了问题,其原因如下: I guess you want to place combo box to di ...

  5. How to hide an entry in the Add/Remove Programs applet?

    Original link: http://www.winhelponline.com/articles/15/1/How-to-hide-an-entry-in-the-AddRemove-Prog ...

  6. 九度OJ 1348 数组中的逆序对 -- 归并排序

    题目地址:http://ac.jobdu.com/problem.php?pid=1348 题目描述: 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求 ...

  7. asp.net弹出框后页面走样

    1.去掉language='javascript' ,问题依旧 2.后面加上Response.Write("<script>document.location=document. ...

  8. C# partial 说明

    1. 什么是局部类型? C# 2.0 引入了局部类型的概念.局部类型允许我们将一个类.结构或接口分成几个部分,分别实现在几个不同的.cs文件中. 局部类型适用于以下情况: (1) 类型特别大,不宜放在 ...

  9. c#WebBrowser进阶

    WebBrowser的基本功能就是访问网页,但是由于它本身就不在主线程上面,所以程序判断它什么时候加载完成了,比较麻烦.为此我集合从网上找到的内容,做了一个例子. 其中包括了给WebBrowser设置 ...

  10. MySQL大数据量快速分页实现

    一般刚开始学SQL语句的时候,会这样写 代码如下:  SELECT * FROM table ORDER BY id LIMIT 1000, 10; 但在数据达到百万级的时候,这样写会慢死 代码如下: ...