有 NN 种物品和一个容量是 VV 的背包,每种物品都有无限件可用。

第 ii 种物品的体积是 vivi,价值是 wiwi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,N,VN,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 NN 行,每行两个整数 vi,wivi,wi,用空格隔开,分别表示第 ii 种物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤10000<N,V≤1000
0<vi,wi≤10000<vi,wi≤1000

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例:

10

AC代码1;
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define HEAP(...) priority_queue<__VA_ARGS__ >
#define heap(...) priority_queue<__VA_ARGS__,vector<__VA_ARGS__ >,greater<__VA_ARGS__ > >
template<class T> inline T min(T &x,const T &y){return x>y?y:x;}
template<class T> inline T max(T &x,const T &y){return x<y?y:x;}
ll read(){ll c = getchar(),Nig = ,x = ;while(!isdigit(c) && c!='-')c = getchar();if(c == '-')Nig = -,c = getchar();while(isdigit(c))x = ((x<<) + (x<<)) + (c^''),c = getchar();return Nig*x;}
#define read read()
const ll inf = 1e18;
const int maxn = 1e6 + ;
const int mod = 1e9 + ;
const int N = ;
int v[N],w[N];
int dp[N];
int main()
{
int n,m;
cin>>n>>m;
for(int i=;i<=n;i++){
cin>>v[i]>>w[i];
}
for(int i=;i<=n;i++){
for(int j=m;j>=;j--){
for(int k=;k*v[i]<=j;k++)
dp[j]=max(dp[j],dp[j-k*v[i]]+k*w[i]);
}
}
printf("%d",dp[m]);
return ;
}

AC代码2(简化版)

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define HEAP(...) priority_queue<__VA_ARGS__ >
#define heap(...) priority_queue<__VA_ARGS__,vector<__VA_ARGS__ >,greater<__VA_ARGS__ > >
template<class T> inline T min(T &x,const T &y){return x>y?y:x;}
template<class T> inline T max(T &x,const T &y){return x<y?y:x;}
ll read(){ll c = getchar(),Nig = ,x = ;while(!isdigit(c) && c!='-')c = getchar();if(c == '-')Nig = -,c = getchar();while(isdigit(c))x = ((x<<) + (x<<)) + (c^''),c = getchar();return Nig*x;}
#define read read()
const ll inf = 1e18;
const int maxn = 1e6 + ;
const int mod = 1e9 + ;
const int N = ;
int v[N],w[N];
int dp[N];
int main()
{
int n,m;
cin>>n>>m;
for(int i=;i<=n;i++){
cin>>v[i]>>w[i];
}
for(int i=;i<=n;i++){
for(int j=v[i];j<=m;j++){//从v[i]开始枚举(而01背包是从m开始)
dp[j]=max(dp[j],dp[j-v[i]]+w[i]);
}
}
printf("%d",dp[m]);
return ;
}

dp(完全背包)的更多相关文章

  1. USACO Money Systems Dp 01背包

    一道经典的Dp..01背包 定义dp[i] 为需要构造的数字为i 的所有方法数 一开始的时候是这么想的 for(i = 1; i <= N; ++i){ for(j = 1; j <= V ...

  2. 树形DP和状压DP和背包DP

    树形DP和状压DP和背包DP 树形\(DP\)和状压\(DP\)虽然在\(NOIp\)中考的不多,但是仍然是一个比较常用的算法,因此学好这两个\(DP\)也是很重要的.而背包\(DP\)虽然以前考的次 ...

  3. HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化)

    HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化) 题意分析 先把每种硬币按照二进制拆分好,然后做01背包即可.需要注意的是本题只需要求解可以凑出几种金钱的价格,而不需要输出种数 ...

  4. HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化)

    HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化) 题意分析 给出一系列的石头的数量,然后问石头能否被平分成为价值相等的2份.首先可以确定的是如果石头的价值总和为奇数的话,那 ...

  5. HDOJ(HDU).2191. 悼念512汶川大地震遇难同胞――珍惜现在,感恩生活 (DP 多重背包+二进制优化)

    HDOJ(HDU).2191. 悼念512汶川大地震遇难同胞――珍惜现在,感恩生活 (DP 多重背包+二进制优化) 题意分析 首先C表示测试数据的组数,然后给出经费的金额和大米的种类.接着是每袋大米的 ...

  6. HDOJ(HDU).4508 湫湫系列故事――减肥记I (DP 完全背包)

    HDOJ(HDU).4508 湫湫系列故事――减肥记I (DP 完全背包) 题意分析 裸完全背包 代码总览 #include <iostream> #include <cstdio& ...

  7. HDOJ(HDU).1284 钱币兑换问题 (DP 完全背包)

    HDOJ(HDU).1284 钱币兑换问题 (DP 完全背包) 题意分析 裸的完全背包问题 代码总览 #include <iostream> #include <cstdio> ...

  8. HDOJ(HDU).1114 Piggy-Bank (DP 完全背包)

    HDOJ(HDU).1114 Piggy-Bank (DP 完全背包) 题意分析 裸的完全背包 代码总览 #include <iostream> #include <cstdio&g ...

  9. HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解)

    HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解) 题意分析 要先排序,在做01背包,否则不满足无后效性,为什么呢? 等我理解了再补上. 代码总览 #in ...

  10. POJ.3624 Charm Bracelet(DP 01背包)

    POJ.3624 Charm Bracelet(DP 01背包) 题意分析 裸01背包 代码总览 #include <iostream> #include <cstdio> # ...

随机推荐

  1. sql查询——子查询

    -- 子查询 -- 一句查询语句内,再套一句查询语句 ,叫子查询 -- 查询班级类身高最高的人的名字 select name from students where high=(select max( ...

  2. python3练习100题——008

    今天第二道,做了明天就可以休息一下- 原题链接:http://www.runoob.com/python/python-exercise-example8.html 题目:输出 9*9 乘法口诀表. ...

  3. SpringBoot集成flowable碰见DMN不能初始化

    在idea创建了SpringBoot项目,集成flowable,运行的时候DMN引擎初始化失败,花了一天时间也没解决. 抱着试试的态度重新建立一个项目,加入同样的依赖,成功运行. 但把成功运行的项目配 ...

  4. 工具系列 | git checkout 可替换命令 git switch 和 git restore

    前言 git checkout 这个命令承担了太多职责,既被用来切换分支,又被用来恢复工作区文件,对用户造成了很大的认知负担. Git社区发布了Git的新版本2.23.在该版本中,有一个特性非常引人瞩 ...

  5. iframe宽高自适应

    iframe子页面结尾添加本script iframe子页面结尾添加本script <script type="text/javascript">         fu ...

  6. 第三十一篇 玩转数据结构——并查集(Union Find)

    1.. 并查集的应用场景 查看"网络"中节点的连接状态,这里的网络是广义上的网络 数学中的集合类的实现   2.. 并查集所支持的操作 对于一组数据,并查集主要支持两种操作:合并两 ...

  7. 传奇HERO引擎给装备加套装属性技巧

    装备加套装在复古的版本里比较少,但在1.76极品,轻变传奇,微变传奇和迷失版本里面用得比较多,每个引擎的方法相差不多,但也有一些小区别,今天给大家讲解下HERO引擎加套装的技巧. 第一步:我们打开M2 ...

  8. 传奇装备锻造升级UPGRADEITEMEX功能详解

    装备升级功能可以指定升级物品及属性,按指定机率得到结果.需要升级的装备物品必须放在身上.命令格式UPGRADEITEMEX 物品位置(0-12) 属性位置(0-14) 成功机率(0-100) 点数机率 ...

  9. js面向过程 分页功能

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  10. pwnable.kr-echo1-Writeup

    pwnable.kr - echo1 - writeup 原文链接:https://www.cnblogs.com/WangAoBo/p/pwnable_kr_echo1.html 旧题新做,发现这道 ...