Luogu P2764 最小路径覆盖问题(二分图匹配)
题面
题目描述
«问题描述:
给定有向图 \(G=(V,E)\) 。设 \(P\) 是 \(G\) 的一个简单路(顶点不相交)的集合。如果 \(V\) 中每个顶点恰好在 \(P\) 的一条路上,则称 \(P\) 是 \(G\) 的一个路径覆盖。 \(P\) 中路径可以从 \(V\) 的任何一个顶点开始,长度也是任意的,特别地,可以为 \(0\) 。 \(G\) 的最小路径覆盖是 \(G\) 的所含路径条数最少的路径覆盖。设计一个有效算法求一个有向无环图 \(G\) 的最小路径覆盖。提示:设 $V= { 1,2,...,n } $ ,构造网络 \(G1=(V1,E1)\) 如下:

«编程任务:
对于给定的给定有向无环图 \(G\) ,编程找出 \(G\) 的一个最小路径覆盖。
输入输出格式
输入格式:
输入文件第 \(1\) 行有 \(2\) 个正整数 \(n\) 和 \(m\) 。 \(n\) 是给定有向无环图 \(G\) 的顶点数, \(m\) 是 \(G\) 的边数。接下来的 \(m\) 行,每行有 \(2\) 个正整数 \(i\) 和 \(j\) ,表示一条有向边 \((i,j)\) 。
输出格式:
从第 \(1\) 行开始,每行输出一条路径。文件的最后一行是最少路径数。
输入输出样例
输入样例:
11 12
1 2
1 3
1 4
2 5
3 6
4 7
5 8
6 9
7 10
8 11
9 11
10 11
输出样例:
1 4 7 10 11
2 5 8
3 6 9
3
说明
\(1 \leq n \leq 150,1 \leq m \leq 6000\)
思路
“最小路径覆盖大家都会吧?” --老师
“会啊。” --huyufeifei
“嗯。” --logeadd
国庆集训正式开始啦!今天早上讲的是图论。老师打开的 \(PPT\) 标题为 NOI中的图论算法 ,身为蒟蒻的我还以为老师少打了一个 p ,结果讲了一上午的黑题...我的任务计划变成了上午讲过的题:
讲到P2304 [NOI2015]小园丁与老司机的时候老师问了上面的那个问题,大家都说会,深深感受到了周围都是神仙的恐惧...我就现在把这题写了。
说下思路:首先最小路径覆盖的最坏答案就是 \(n\) ,也就是每个节点都不得不用一条路径去覆盖它。而很容易发现,有边相连的两个点可以用同一路径来覆盖,那么我们就可以把这样的两个点缩到同一条路径之中。能把更多的点缩起来,就能用最少的边达成目的。设我们能缩 \(k\) 组点,那么最终答案就是 \(n-k\) 。
因为每个点只能缩一次,所以就可以用二分图最大匹配的方法来转换问题,匈牙利算法和最大流都是可行的,在这里我使用的是码量较小的匈牙利。
AC代码
#include<bits/stdc++.h>
using namespace std;
const int MAXN=160;
const int MAXM=6010;
int n,m,ans,match[MAXN],inv[MAXN];
int cnt,top[MAXN],to[MAXM],nex[MAXM];
int js,edge[MAXN];
bool vis[MAXN];
int read()
{
int re=0;
char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) re=(re<<3)+(re<<1)+ch-'0',ch=getchar();
return re;
}
bool dfs(int now)
{
for(int i=top[now];i;i=nex[i])
{
if(!vis[to[i]])
{
vis[to[i]]=true;
if(!match[to[i]]||dfs(match[to[i]]))
{
match[to[i]]=now;
inv[now]=to[i];
return true;
}
}
}
return false;
}
void fd(int now)
{
vis[now]=true,edge[js++]=now;
if(inv[now]&&!vis[inv[now]]) fd(inv[now]);
if(match[now]&&!vis[match[now]]) fd(match[now]);
}
int main()
{
ans=n=read(),m=read();
while(m--)
{
int x=read(),y=read();
to[++cnt]=y,nex[cnt]=top[x],top[x]=cnt;
}
for(int i=1;i<=n;i++)
{
memset(vis,0,sizeof vis);
if(dfs(i)) ans--;
}
for(int i=1;i<=n;i++)
{
js=0;
if(!vis[i])
{
fd(i);
sort(edge,edge+js);
for(int j=0;j<js;j++) printf("%d ",edge[j]);
puts("");
}
}
printf("%d",ans);
return 0;
}
Luogu P2764 最小路径覆盖问题(二分图匹配)的更多相关文章
- luogu P2764 最小路径覆盖问题
题目描述 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开始,长度也是任 ...
- 洛谷P2764 最小路径覆盖问题(二分图)
题意 给出一张有向无环图,求出用最少的路径覆盖整张图,要求路径在定点处不相交 输出方案 Sol 定理:路径覆盖 = 定点数 - 二分图最大匹配数 直接上匈牙利 输出方案的话就不断的从一个点跳匹配边 # ...
- LUOGU P2764 最小路径覆盖问题 (最小路径点覆盖)
解题思路 有向图最小路径点覆盖问题,有这样的结论就是有向图最小路径点覆盖等于n-拆点二分图中最大匹配.具体怎么证明不太知道..输出方案时找到所有左部未匹配的点一直走$match$就行了. #incl ...
- 【luogu P2764 最小路径覆盖问题】 模板
题目链接:https://www.luogu.org/problemnew/show/P2764 把每个点在左边建一遍右边建一遍,再加上源点汇点,跑最大流,n-最大流就是答案. #include &l ...
- 洛谷 P2764 最小路径覆盖问题 解题报告
P2764 最小路径覆盖问题 问题描述: 给定有向图\(G=(V,E)\).设\(P\) 是\(G\) 的一个简单路(顶点不相交)的集合.如果\(V\) 中每个顶点恰好在\(P\) 的一条路上,则称\ ...
- P2764 最小路径覆盖问题 网络流重温
P2764 最小路径覆盖问题 这个题目之前第一次做的时候感觉很难,现在好多了,主要是二分图定理不太记得了,二分图定理 知道这个之后就很好写了,首先我们对每一个点进行拆点,拆完点之后就是跑最大流,求出最 ...
- Luogu 2764 最小路径覆盖问题 / Libre 6002 「网络流 24 题」最小路径覆盖 (网络流,最大流)
Luogu 2764 最小路径覆盖问题 / Libre 6002 「网络流 24 题」最小路径覆盖 (网络流,最大流) Description 给定有向图G=(V,E).设P是G的一个简单路(顶点不相 ...
- 【Luogu】P2764最小路径覆盖(拆点求最大匹配)
题目链接 这个……学了一条定理 最小路径覆盖=原图总点数-对应二分图最大匹配数 这个对应二分图……是什么呢? 就是这样 这是原图 这是拆点之后对应的二分图. 然后咱们的目标就是从这张图上跑出个最大流来 ...
- 洛谷 P2764 最小路径覆盖问题【最大流+拆点+路径输出】
题目链接:https://www.luogu.org/problemnew/show/P2764 题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V ...
随机推荐
- 初识OpenCV-Python - 008: 形态转换
本节学习了图片的形态转换,即利用函数和图像的前景色和背景色去侵蚀或者扩张图像图形. import cv2import numpy as npfrom matplotlib import pyplot ...
- Lost's revenge HDU - 3341 AC自动机+DP(需要学会如何优雅的压缩状态)
题意: 给你n个子串和一个母串,让你重排母串最多能得到多少个子串出现在重排后的母串中. 首先第一步肯定是获取母串中每个字母出现的次数,只有A T C G四种. 这个很容易想到一个dp状态dp[i][A ...
- iOS逆向系列-Cycript
概述 Cycript 是Objective-C++.ES(JavaScript).Java等语法的混合物. 可以用来探索.修改.调试正在运行的Mac\iOS App. 通过Cydia安装Cycript ...
- umount:将文件设备卸载
[root@centos57 ~]# umount /dev/hda1 用设备文件名来卸载 [root@centos57 ~]# umount /aixi 用挂 ...
- css3 随记
1 让子元素对其的方式 box-pack 2 -webkit-text-size-adjust 解决字体大小失效问题http://www.frontopen.com/273.html 3 disp ...
- DOM节点的创建、插入、删除
值得注意的是:节点的创建.插入以及删除都是操作父级容器.(1)创建var newDiv = documnet.createElement('div'); ——创建的元素只能操作一次 (2)插入/追加a ...
- 《你不知道的JavaScript》上卷——第1章
知识点总结 1.什么是作用域? 作用域是根据名称查找变量的一套规则. 2.通常将JavaScript归类为“动态”或“解释执行”语言,但事实上它是一门编译语言. 3.编译 在传统编译语言的流程中,程序 ...
- SaltStack远程执行Windows job程序(黑窗口)填坑经过
近期接到领导通知,要将公司内的所有Windows服务添加到自动发布系统中,由于这种服务很多,节点分布散乱,每次都是由开发主管手动替换(虽然他们自己开发了自动打包替换工具,但仍需要一台一台登陆到服务器上 ...
- 使用movable-view制作可拖拽的微信小程序弹出层效果。
仿了潮汐睡眠小程序的代码.[如果有侵权联系删除 最近做的项目有个弹出层效果,类似音乐播放器那种.按照普通的做了一般感觉交互不是很优雅,设计妹子把潮汐睡眠的弹层给我看了看,感觉做的挺好,于是乘着有空仿照 ...
- VS2010-MFC(对话框:设置对话框控件的Tab顺序)
转自:http://www.jizhuomi.com/software/158.html 上一讲为“计算”按钮添加了消息处理函数后,加法计算器已经能够进行浮点数的加法运算.但是还有个遗留的小问题,就是 ...