状态压缩DP是什么?

答:利用位运算(位运算比加减乘除都快!)来记录状态,并实现动态规划。

适用于什么问题?

答:数据规模较小;不能使用简单的算法解决。

例题:

题目描述

糖果店的老板一共有M 种口味的糖果出售。为了方便描述,我们将M种口味编号1~M。
小明希望能品尝到所有口味的糖果。遗憾的是老板并不单独出售糖果,而是K颗一包整包出售。
幸好糖果包装上注明了其中K 颗糖果的口味,所以小明可以在买之前就知道每包内的糖果口味。
给定N 包糖果,请你计算小明最少买几包,就可以品尝到所有口味的糖果。

输入

第一行包含三个整数N、M 和K。
接下来N 行每行K 这整数T1,T2,...,TK,代表一包糖果的口味。
1<=N<=100,1<=M<=20,1<=K<=20,1<=Ti<=M。

输出

一个整数表示答案。如果小明无法品尝所有口味,输出-1。

样例输入

6 5 3
1 1 2
1 2 3
1 1 3
2 3 5
5 4 2
5 1 2

样例输出

2

数据规模不大,很适合用状态压缩DP。

思路如下:

用二进制的1和0来表示某类糖果的有无。比如按照上面的样例,总共有5种糖果。第二行1 1 2就是00011,第三行1 2 3就是00111,最后一行5 1 2就是10011...

然后我们用dp数组在存储这些状态。

int dp[<<m];

将其初始化为-1.每读取一行,就将相对应的元素赋值1,代表买一包就能买到这些种类的糖果。

AC代码如下:

 #include<bits/stdc++.h>
using namespace std; int main() {
int n, m, k,s,ss;
cin >> n >> m >> k;
int dp[ << ];
int goods[];
memset(dp, -, sizeof(dp));
for(int j=;j<n;j++) {
ss = ;
for (int i = ; i < k; i++) {
cin >> s;
ss |= ( << (s - ));
}
goods[j] = ss;
dp[ss] = ;
}
for (int i = ; i < n; i++) {
for (int j = ; j < ( << m); j++) {
if (dp[j] == -) continue;
if (dp[j | goods[i]] == -)
dp[j | goods[i]] = dp[j] + dp[goods[i]];
else
dp[j | goods[i]] = min(dp[j] + dp[goods[i]], dp[j | goods[i]]);
}
}
cout << dp[( << m) - ];
}

【算法】状态压缩DP的更多相关文章

  1. HDU 4511 (AC自动机+状态压缩DP)

    题目链接:  http://acm.hdu.edu.cn/showproblem.php?pid=4511 题目大意:从1走到N,中间可以选择性经过某些点,比如1->N,或1->2-> ...

  2. 状态压缩·一(状态压缩DP)

    描述 小Hi和小Ho在兑换到了喜欢的奖品之后,便继续起了他们的美国之行,思来想去,他们决定乘坐火车前往下一座城市——那座城市即将举行美食节! 但是不幸的是,小Hi和小Ho并没有能够买到很好的火车票—— ...

  3. [转]状态压缩dp(状压dp)

    状态压缩动态规划(简称状压dp)是另一类非常典型的动态规划,通常使用在NP问题的小规模求解中,虽然是指数级别的复杂度,但速度比搜索快,其思想非常值得借鉴. 为了更好的理解状压dp,首先介绍位运算相关的 ...

  4. 最短路+状态压缩dp(旅行商问题)hdu-4568-Hunter

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4568 题目大意: 给一个矩阵 n*m (n m<=200),方格里如果是0~9表示通过它时要花 ...

  5. 2010辽宁省赛E(Bellman_Ford最短路,状态压缩DP【三进制】)

    #include<bits/stdc++.h>using namespace std;const int inf=0x3f3f3f3f;struct node{    int v,z,d, ...

  6. 旅行商问题——状态压缩DP

    问题简介 有n个城市,每个城市间均有道路,一个推销员要从某个城市出发,到其余的n-1个城市一次且仅且一次,然后回到再回到出发点.问销售员应如何经过这些城市是他所走的路线最短? 用图论的语言描述就是:给 ...

  7. 浅谈状态压缩DP

    浅谈状态压缩DP 本篇随笔简单讲解一下信息学奥林匹克竞赛中的状态压缩动态规划相关知识点.在算法竞赛中,状压\(DP\)是非常常见的动规类型.不仅如此,不仅是状压\(DP\),状压还是很多其他题目的处理 ...

  8. Codeforces C. A Simple Task(状态压缩dp)

    题目描述:  A Simple Task time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  9. luogu P2704 炮兵阵地(经典状态压缩DP)

    方格有m*n个格子,一共有2^(m+n)种排列,很显然不能使用暴力法,因而选用动态规划求解. 求解DP问题一般有3步,即定义出一个状态 求出状态转移方程 再用算法实现.多数DP题难youguan点在于 ...

随机推荐

  1. 用Excel排值班表用到的几个公式

    用Excel排值班表用到的几个公式 最近,疫情得到了一定的缓解,但还不能放松.所以,各单位都加强值班.那就得排值班表.提到的表当然要用Excel,为什么?因为Excel中的公式真得能让我们提高工作效率 ...

  2. bzoj3162独钓寒江雪

    题意 \(n\)阶树,求本质不同的独立集个数 做法 重新编号后重心是不变的,如果有两个重心,可以加个虚点 用树哈希判子树有多少个相同的子树,设某种有\(k\)个,如果原本方案数为\(x\)个 则方案数 ...

  3. element-ui 和ivew-ui的table导出export纯前端(可用)

    一.element-ui 1.安装依赖Element组件库中的el-table表格导出需要的主要是两个依赖:(xlsx 和 file-saver) npm install --save xlsx fi ...

  4. libgdiplus安装配置

    1.下载安装包:wget http://download.mono-project.com/sources/libgdiplus/libgdiplus0-6.0.4.tar.gz2.解压缩.编译安装 ...

  5. 纪中10日T1 2313. 动态仙人掌

    纪中10日 2313. 动态仙人掌 (File IO): input:dinosaur.in output:dinosaur.out 时间限制: 1500 ms  空间限制: 524288 KB  具 ...

  6. python + excel工资条自动生成

    年终绩效分配结果出来了,领导要求每人要清楚地知道自己的情况.要求:总绩效和各分类都要清楚.这就表示我们要给每人六个纸条,一个总的,五个分的.打出来,裁开,分发给每个人!累死人.所以,我就想能否每人生成 ...

  7. fatal error LNK1169: one or more multiply defined symbols found

    在 Project/Setting/Link/General中的 Project Options: 加入 /FORCE:MULTIPLE即可")可以解决报错问题,但是这些问题全部变成了war ...

  8. 一种使用SOC精确控制脉冲的方法

    在emfi测试中需要精确的控制脉冲时间.控制器产生的脉冲信号会经过控压的MOS管,这些组件会造成很严重的延时,但是尽管如此,控制系统的高精度也是必须的,因为控制系统的误差会逐级下延,引起更大的误差. ...

  9. 今日头条 SEO 研究,值得深思的 5 个问题

    在做SEO的过程中,实际上,我并不是“技术挂”更多的是基于搜索原理与大量的实战,总结相关的经验,这么多年,经常养成一个小习惯,总是记录一些工作中遇到的一些小问题与小技巧. 特别是2017年,12月份开 ...

  10. 剑指offer-面试题14-剪绳子-动态规划法

    /* 题目: 给定一个长度为n的绳子,把绳子剪为m段,(n>1,m>1) 求各段绳子乘积的最大值. */ /* 思路: 动态规划. f(n)=max(f(1)*f(n-1),f(2)*f( ...