At this point, you should start to familiarize yourself a bit with the publicly available 3ds Max API documentation. The contents of the file map practically 1:1 with how the system is built up internally. Most important is the inheritance of the classes, as we need to be aware of all the parent classes, and preferably structure our parser classes in a similar way.

As a reminder, check out the output that we got out of the file in the last part. Turn on some good music, and scroll away. The file starts with a ParamBlock2, and ends with a Scene, which is interesting, isn't it? ParamBlock2 is one of the lowest classes in power, while Scene stands basically at the top of the entire system. It means that the deepest structures, or rather the structures on which everything depends, are serialized out first, followed by the higher classes, which are very likely to refer to them in some way. Chances are high that the second class that is serialized directly refers to the first one; and, as you can easily spot, the class with index 1 has two values that equal 0.

        1 0x0001: (SceneClassUnknown: ViewportManager, (0x5a06293c, 0x30420c1e), ViewportManager.gup) [3] {
0 0x2034: (StorageRaw) {
Size: 8
String: ........
Hex: 00 00 00 00 ff ff ff ff }
1 0x204b: (StorageRaw) {
Size: 1
String: .
Hex: 2e }
2 0x1000: (StorageRaw) {
Size: 4
String: ....
Hex: 00 00 00 00
Int: 0
Float: 0 } }

Unfortunately, 0 is not much of a trustworthy value (which reminds me that you should search for Float: 1 values appearing in the scene, those tend to reveal a lot). But, we do have at least two potential chunks, 0x2034 or 0x1000, that may possibly refer to the first class. Moving on to the next class, at index 2 there's another ParamBlock2; which is unlikely to refer to something else, and at index three we can find another class which happens to have a reference to index 2 in one of it's values, 0x2034, which, as it will appear by examining more data, is no coincidence.

        3 0x0002: (SceneClassUnknown: mental ray: material custom attribute, (0x218ab459, 0x25dc8980), mrMaterialAttribs.gup) [2] {
0 0x2034: (StorageRaw) {
Size: 4
String: ....
Hex: 02 00 00 00
Int: 2
Float: 2.8026e-45 }
1 0x204b: (StorageRaw) {
Size: 1
String: .
Hex: 2e } }

As we saw in the previous part, the first chunk that could be found in many of the class instances in the scene, was related to AppData, which is implemented in the Animatable class. The chunks containing the references appear either first, or after this AppData chunk. They are handled by the ReferenceMaker class, a subclass of Animatable, which is one of the base classes that all of the scene classes derive from. Given this, we can fairly assume that the chunks are written in order of inheritance. This is fairly logical. And it also allows us to guess more accurately at which level chunks are implemented that we have not encountered before.

The references, however, are not related to the more user-centric scene graph. Consultation of the documentation will clarify that the scene graph itself is stored in Node classes, which then reference the objects that they represent in the scene, and that the objects normally have no need for knowledge of their position or rank in the scene. In the file, we can find two node entries. After improving our parser to better show the references, these appear as follows.

        380 0x0012: (NodeUnknown: RootNode, (0x00000002, 0x00000000), Builtin) [0] {
References 0x2035: (StorageArray) {
0: 16 }
0x204B Equals 0x2E (46): (CStorageValue) { 46 }
Orphan[0] 0x0120: (StorageRaw) {
Size: 0
String:
Hex: } }

and

        389 0x001a: (NodeImpl: Node, (0x00000001, 0x00000000), Builtin) [0] {
AppData: (AppData) [83] PARSED {
... etc ... }
References 0x2035: (StorageArray) {
0: 16
1: 0
2: 384
3: 1
4: 387
5: 3
6: 134
7: 6
8: 388 }
0x204B Equals 0x2E (46): (CStorageValue) { 46 }
Orphan[0] 0x09ce: (StorageRaw) {
Size: 4
String: ....
Hex: bc 02 00 00
Int: 700
Float: 9.80909e-43 }
Orphan[1] 0x0960: (StorageRaw) {
Size: 8
String: |.......
Hex: 7c 01 00 00 00 08 00 00 }
Orphan[2] 0x0962: (StorageRaw) {
Size: 40
String: G.E._.A.c.c._.M.i.k.o.t.o.B.a.n.i.e.r.e. }
Orphan[3] 0x09ba: (StorageRaw) {
Size: 0
String:
Hex: }
... etc ....

The RootNode appears before the Node, which is opposite to how the Scene stores the classes. This would mean that a node holds a reference to it's parent somewhere. It does not seem to be in the references block, though. The index of the parent, 380, would be found in the hex print as 7c 01. Easily spotted. The first four bytes of 0x0960 refer to the parent index, the four bytes after that suspicously look like flags of some sort. The chunk before it, 0x09ce, is constant across the file, and is different in different file versions, and I would expect it to be a version number. The chunk with the name after that speaks for itself, and the empty one doesn't seem to interesting right now, because it's empty. Empty chunks tend to contain strings or arrays, that's all you can guess.

But, this node is just some metadata, and it does not actually contain the mesh. It must point to the mesh somehow. In the file there's an Editable Poly at index 387.

387 0x0018: (SceneClassUnknown: Editable Poly, (0x1bf8338d, 0x192f6098), EPoly.dlo) [12] {

Which happens to be refered to at index 4 in the 0x2035 block. The chunk refers to more, so we look up those as well.

384 0x0016: (SceneClassUnknown: Position/Rotation/Scale, (0x00002005, 0x00000000), Builtin) [5] {
134 0x000d: (SceneClassUnknown: NeL Material, (0x64c75fec, 0x222b9eb9), Script) [8] {
388 0x0019: (SceneClassUnknown: Base Layer, (0x7e9858fe, 0x1dba1df0), Builtin) [9] {

There are other values in this 0x2035 chunk, but they are not references. Two different chunks are used for storing references to other classes, 0x2034 and 0x2035, either one of them and never both of them in the same class. The 0x2034 block simply is an array of all references directly, where -1 indices map to pointer NULL. Here, however, we see the block 0x2035 in use. Cross referencing with different files reveals that the object appears after the number 1, a controller after 0, a material after 3, and a layer after 6. It would appear that this chunk stores the both the class's index and the reference's index as a map instead, preceeded by some other integer value that probably contains flags of some sort.

At this point, we can parse the scene graph. That's very nice, but we're not geting any actual 3d data yet, which, for curiosity's sake would be totally fun to get out of all this, right? Even though my initial plan was just to parse the file to change some filepath strings inside there.

【转】http://blog.kaetemi.be/post/2012/08/23/3ds-Max-File-Format-%28Part-5%29

3ds Max File Format (Part 5: How it all links together; ReferenceMaker, INode)的更多相关文章

  1. 3ds Max File Format (Part 1: The outer file format; OLE2)

    The 3ds Max file format, not too much documentation to be found about it. There are some hints here ...

  2. 3ds Max File Format (Part 3: The department of redundancy department; Config)

    Now we'll have a look at the Config stream. It begins like follows, and goes on forever with various ...

  3. 3ds Max File Format (Part 2: The first inner structures; DllDirectory, ClassDirectory3)

    Now that we understand the outer structure of the file, it's time to look closer to what's inside. T ...

  4. 3ds Max File Format (Part 4: The first useful data; Scene, AppData, Animatable)

    The most interesting part of this file is, evidently, the Scene. Opening it up in the chunk parser, ...

  5. 3ds Max File Format (Part 6: We get signal)

    Let's see what we can do now. INode *node = scene.container()->scene()->rootNode()->find(uc ...

  6. AVEVA PDMS to 3ds Max - RvmTranslator6.0beta

    AVEVA PDMS to 3ds Max - RvmTranslator6.0beta eryar@163.com RvmTranslato6.0 translate PDMS RVM to 3ds ...

  7. VRay 2.0 SP1 2.10.01 for 3ds max 9/2008/2009/2010/2011/2012 32/64位 顶渲简体中文版+英文版[中国室内设计论坛-室内人]

    VRay 2.0 SP1 2.10.01 for 3ds max 9/2008/2009/2010/2011/2012 32/64位 顶渲简体中文版+英文版[中国室内设计论坛-室内人] 对最新版本的V ...

  8. 万圣节福利:红孩儿3D引擎开发课程《3ds max导出插件初步》

    ds max文件夹,插件文件夹以及3ds max的可执行程序文件夹: 位的,这里要改成x64,否则启动程序后3ds max会提示"不是有效的win32程序"之类的对话框. 然后要将 ...

  9. 【Unity】3.3 用3ds Max 2015制作模型并将其导入到Unity

    分类:Unity.C#.VS2015 创建日期:2016-04-05 一.常用三维软件简介 由于游戏引擎本身的建模功能相对较弱,无论是专业性还是自由度都无法同专业的三维软件相比,所以大多数游戏中的模型 ...

随机推荐

  1. visual studio 2019:error c2760

    笔者在敲书上的练习题时(完全按照书上代码,没有语法错误),报"error c2760"错误. 代码出错位置(代码并没有问题): 在网上查找了一下,发现"c2760&quo ...

  2. PHP0020:PHP 单文件上传 多文件上传

  3. bitset刷题记录

    大佬的bitset用法小结 https://www.cnblogs.com/zwfymqz/p/8696631.html BZOJ3687简单题 题意:求子集的算术和的异或和,子集大小为n(n< ...

  4. Java【第二课 扫描仪 & 布尔数据类型】

    一.Java扫描仪 为了更加方便的理解,我先将逻辑框图 这个有点像C语言的scan()的用法 import java.util.Scanner; //导入扫描仪 public class demo{ ...

  5. Java邮件发送工具类

    个人博客 地址:https://www.wenhaofan.com/article/20190507104851 引入Pom依赖 依赖于apchae email包,maven项目可直接加入以下依赖,普 ...

  6. .NET Core 初次上手Swagger

    安装NuGet 程序包=>Swashbuckle.AspNetCore 在  Startup.ConfigureServices  方法里添加注册生成器 //注册Swagger生成器,定义一个和 ...

  7. 轻量级RPC设计与实现第一版

    什么是RPC RPC (Remote Procedure Call Protocol), 远程过程调用,通俗的解释就是:客户端在不知道调用细节的情况下,调用存在于远程计算机上的某个对象,就像调用本地应 ...

  8. Vasya and a Tree CodeForces - 1076E

    很好的思维 转化为对树上的深度差分 回朔的思想 对查询离线 #include<iostream> #include<cstdio> #include<cmath> ...

  9. 深入理解Java内存模型中的虚拟机栈

    深入理解Java内存模型中的虚拟机栈 Java虚拟机在执行Java程序的过程中会把它所管理的内存划分为若干个不同的数据区域,这些区域都会有各自的用途,以及创建和销毁的时间,有的区域会随着虚拟机进程的启 ...

  10. densenet思路 以及和残差网络区别,pytorch实现

    densenet思路 以及和残差网络区别,pytorch实现 待办 densenet思路以及和残差网络区别.以及densenet的pytorch实现 https://zhuanlan.zhihu.co ...