题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1245

题意:仿照上面那题他想求这么个公式的数。但是递归太慢啦。让你找公式咯。

题解:显然直接longlong存不下。暴力肯定不行啦。这题真的写了很久,死都不懂怎么找的公式啊。然后在wjd的帮助下懂了这题。

我们先列举几个例子

有没有发现他们的共同点,就是除到一定程度,就会变成1。这个临界点是sqrt(n)。那在sqrt(n)前面我们要算的就是这个数对于1,2,3……sqrt(n)的因子个数。

这个因子个数设为x。

n = i * x;

这个时候如果直接求是会TLE的。所以会推出来一个公式。

x  =  (n / i  - n / (i+1) ) * i;

至于这个公式怎么出来的。网上有篇博客是画图推的。QWQ。

这个公式是求什么的呢?其实就是求 x为 1~sqrt(n) 的时候,会有几个这样的式子。

拿10举例,

x = 1 ,i  = 6,7,8,9,10。 5个

x = 2 ,i  =  4 , 5。 2个

x = 3 ,i  =  3。     1个

i在1~sqrt(n)之间当然就可以直接求个数啦。 大胆的n/i。

把所有的x加起来就是答案。因为n可能为平方数,sqrt(n)可能多算了一次所以要减去这一次。

这个真的很难懂啊。QAQ、要多看几遍才行。

 #include<iostream>
#include<cmath>
#include<cstdio>
#define ll long long
using namespace std;
int main(){
int T;
cin>>T;
int t = ;
while(T--){
int n;
cin>>n;
ll sum = ;
int tot = sqrt(n);
for(int i = ; i <= tot ;i++){
sum += n / i;
} //枚举 sqrt(n) ~ n x在1~sqrt(n)直接算
for(int i = ; i <= tot ;i++ ){
sum += (n / i - n / (i+)) * i;
} //枚举1~sqrt(n); x在后面就用公式
if( tot == n / tot )
sum -= tot;
printf("Case %d: %lld\n",t,sum);
t++;
}
return ;
}

LightOJ 1245 - Harmonic Number (II)的更多相关文章

  1. LightOJ 1245 Harmonic Number (II)(找规律)

    http://lightoj.com/volume_showproblem.php?problem=1245 G - Harmonic Number (II) Time Limit:3000MS    ...

  2. LightOJ - 1245 - Harmonic Number (II)(数学)

    链接: https://vjudge.net/problem/LightOJ-1245 题意: I was trying to solve problem '1234 - Harmonic Numbe ...

  3. LightOj 1245 --- Harmonic Number (II)找规律

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1245 题意就是求 n/i (1<=i<=n) 的取整的和这就是到找规律的题 ...

  4. lightoj 1245 Harmonic Number (II)(简单数论)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1245 题意:求f(n)=n/1+n/2.....n/n,其中n/i保留整数 显 ...

  5. LightOJ 1245 Harmonic Number (II) 水题

    分析:一段区间的整数除法得到的结果肯定是相等的,然后找就行了,每次是循环一段区间,暴力 #include <cstdio> #include <iostream> #inclu ...

  6. LightOJ - 1245 Harmonic Number (II) 求同值区间的和

    题目大意:对下列代码进行优化 long long H( int n ) {    long long res = 0;    for( int i = 1; i <= n; i++ )      ...

  7. LightOJ - 1234 LightOJ - 1245 Harmonic Number(欧拉系数+调和级数)

    Harmonic Number In mathematics, the nth harmonic number is the sum of the reciprocals of the first n ...

  8. 1245 - Harmonic Number (II)(规律题)

    1245 - Harmonic Number (II)   PDF (English) Statistics Forum Time Limit: 3 second(s) Memory Limit: 3 ...

  9. 1245 - Harmonic Number (II)---LightOJ1245

    http://lightoj.com/volume_showproblem.php?problem=1245 题目大意:一个数n除以1到n之和 分析:暴力肯定不行,我们可以先求1~sqrt(n)之间的 ...

随机推荐

  1. QtConcurrent::run() 的使用

    QFuture<T>run(constClass *object,T(Class::*fn)(Param1,Param2,Param3,Param4,Param5)const,constA ...

  2. jmeter 创建接口测试案例

    1 怎么做接口测试? 一般情况下,由于我们项目前后调用主要是基于http协议的接口,所以测试接口时主要是通过工具或代码模拟http请求的发送和接收.所以我们下面整理了一下使用Jmeter工具进行htt ...

  3. IdentityServer4认证服务器集成Identity&配置持久化数据库

    文章简介 asp.net core的空Web项目集成相关dll和页面文件配置IdnetityServer4认证服务器 Ids4集成Identity Ids4配置持久化到数据库 写在最前面,此文章不详细 ...

  4. Java目录事件

    当文件系统中的对象被修改时,我们可以监听watch服务以获取警报.java.nio.file包中的以下类和接口提供watch服务. Watchable接口 WatchService接口 WatchKe ...

  5. Navicat for MySQL使用手记

    摘要 在管理MySQL数据库的图形化工具中,最为熟知的就是phpMyAdmin和Mysql-Front了,今天跟大家分享另外一个管理mysql数据库的另外一个利器---Navicat MySQL. N ...

  6. 区分slice,splice,split

    原文:https://www.cnblogs.com/webjoker/p/5218114.html 1.slice(数组) 用法:array.slice(start,end) 解释:该方法是对数组进 ...

  7. Pandas异常值处理

    import pandas as pd #生成异常数据 df=pd.DataFrame({'col1':[1,120,3,5,2,12,13], 'col2':[12,17,31,53,22,32,4 ...

  8. Avito Cool Challenge 2018 B - Farewell Party

    题目大意: 有n个人 接下来一行n个数a[i] 表示第i个人描述其他人有a[i]个的帽子跟他不一样 帽子编号为1~n 如果所有的描述都是正确的 输出possible 再输出一行b[i] 表示第i个人的 ...

  9. mysql 记录(record)

    以下内容来源于<mysql内核:Innodb存储引擎 卷1> 简单介绍物理记录和大记录.仅为理解mysql 索引基础 存储结构这一章节而写. mysql的默认存储引擎为Innodb.Inn ...

  10. boost 实现读写锁

    #include <boost/thread/shared_mutex.hpp> #include <boost/thread/locks.hpp> using BoostMu ...