题目描述:给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。

题目分析

题目中“n 至少可以拆分为两个正整数的和”,这个条件说明了 n 是大于 1 的整数。

对 7 来说,可以拆成 3+4,最大乘积是 12。

对 8 来说,可以拆成 3+3+2,最大乘积是 18。

解法 1: 动态规划

状态数组dp[i]表示:数字 i 拆分为至少两个正整数之和的最大乘积。为了方便计算,dp 的长度是 n + 1,值初始化为 1。

显然dp[2]等于 1,外层循环从 3 开始遍历,一直到 n 停止。内层循环 j 从 1 开始遍历,一直到 i 之前停止,它代表着数字 i 可以拆分成 j + (i - j)。但 j * (i - j)不一定是最大乘积,因为i-j不一定大于dp[i - j](数字i-j拆分成整数之和的最大乘积),这里要选择最大的值作为 dp[i] 的结果。

空间复杂度是 \(O(N)\),时间复杂度是 \(O(N^2)\)。代码实现如下:

// ac地址:https://leetcode-cn.com/problems/integer-break/
// 原文地址:https://xxoo521.com/2020-02-15-integer-break/ /**
* @param {number} n
* @return {number}
*/
var integerBreak = function(n) {
const dp = new Array(n + 1).fill(1); for (let i = 3; i <= n; ++i) {
for (let j = 1; j < i; ++j) {
dp[i] = Math.max(dp[i], j * (i - j), j * dp[i - j]);
}
} return dp[n];
};

解法 2: 贪心法

力扣上此题给出了提示:多试试几个例子,找出规律。下面说下我找规律的思路。

前面提到:8 拆分为 3+3+2,此时乘积是最大的。然后就推测出来一个整数,要拆成多个 2 和 3 的和,保证乘积最大。原理很容易理解,因为 2 和 3 可以合成任何数字,例如5=2+3,但是5 < 2*3;例如6=3+3,但是6<3*3。所以根据贪心算法,就尽量将原数拆成更多的 3,然后再拆成更多的 2,保证拆出来的整数的乘积结果最大。

但上面的解法还有不足。如果整数 n 的形式是 3k+1,例如 7。按照上面规则,会拆分成“3 + 3 + 1”。但是在乘法操作中,1 是没作用的。此时,应该将 1 和 3 变成 4,也就是“3 + 3 + 1”变成“3 + 4”。此时乘积最大。

综上所述,算法的整体思路是:

  • n 除 3 的结果为 a,余数是 b
  • 当 b 为 0,直接将 a 个 3 相乘
  • 当 b 为 1,将(a-1)个 3 相乘,再乘以 4
  • 当 b 为 2,将 a 个 3 相乘,再乘以 2

空间复杂度是 O(1),时间复杂度是 O(1)。代码实现如下:

// ac地址:https://leetcode-cn.com/problems/integer-break/
// 原文地址:https://xxoo521.com/2020-02-15-integer-break/ /**
* @param {number} n
* @return {number}
*/
var integerBreak = function(n) {
if (n === 2) return 1;
if (n === 3) return 2;
// a的含义:n能拆成的3的个数
const a = Math.floor(n / 3);
const b = n % 3; // n是3的倍数
if (b === 0) return Math.pow(3, a);
// n是 3k + 1,例如7。拆成3、3、1。由于有1对结果无法有贡献,所以最后的3、1换成4
if (b === 1) return Math.pow(3, a - 1) * 4;
return Math.pow(3, a) * 2;
};

如果想了解详细的数学推理,请参考《Leetcode 343:整数拆分(最详细的解法!!!)》

更多资料

  • LeetCode 343.整数拆分 - JavaScript的更多相关文章

    1. LeetCode 343. 整数拆分(Integer Break) 25

      343. 整数拆分 343. Integer Break 题目描述 给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化. 返回你可以获得的最大乘积. 每日一算法2019/5/2 ...

    2. Java实现 LeetCode 343 整数拆分(动态规划入门经典)

      343. 整数拆分 给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化. 返回你可以获得的最大乘积. 示例 1: 输入: 2 输出: 1 解释: 2 = 1 + 1, 1 × ...

    3. leetcode 343 整数拆分

      1.这个题拿到之后没有什么思路,此时就应该考虑暴力法.然而每次不知道要拆成几份,没办法用循环,所以想到用递归. 如图所示进行递归,显然有很多重复的计算,所以用自底向上的动态规划. 2.还有一个问题就是 ...

    4. 前端与算法 leetcode 7. 整数反转

      目录 # 前端与算法 leetcode 7. 整数反转 题目描述 概要 提示 解析 解法 算法 传入测试用例的运行结果 执行结果 GitHub仓库 # 前端与算法 leetcode 7. 整数反转 题 ...

    5. HDU 4651 Partition(整数拆分)

      题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4651 题意:给出n.求其整数拆分的方案数. i64 f[N]; void init(){    f[0 ...

    6. LightOJ 1336 Sigma Function(数论 整数拆分推论)

      --->题意:给一个函数的定义,F(n)代表n的所有约数之和,并且给出了整数拆分公式以及F(n)的计算方法,对于一个给出的N让我们求1 - N之间有多少个数满足F(x)为偶数的情况,输出这个数. ...

    7. LightOJ 1341 Aladdin and the Flying Carpet(整数拆分定理)

      分析:题目并不难理解,就是一些细节上的优化需要我们注意,我在没有优化前跑了2000多MS,优化了一些细节后就是400多MS了,之前还TLE了好几次. 方法:将整数拆分为质因子以后,表达为这样的形式,e ...

    8. HDU1028 (整数拆分)

      Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

    9. LeetCode:整数转罗马数字【12】

      LeetCode:整数转罗马数字[12] 题目描述 罗马数字包含以下七种字符: I, V, X, L,C,D 和 M. 字符 数值 I 1 V 5 X 10 L 50 C 100 D 500 M 10 ...

    随机推荐

    1. C++装饰器模式

      UML图: #include <iostream> #include <string> #include <windows.h> using namespace s ...

    2. 在GeneXus开发过程中如何进行自动化测试?

      1. 简介 GXtest是基于专门为GeneXus平台开发的应用程序提供的自动化测试解决方案. 我们强调“解决方案”和“自动化”两个词: 解决方案:GXtest为整个GeneXus软件开发生命周期提供 ...

    3. 一个动态扩展表格控件列和行的 jQuery 插件

      一个动态扩展表格控件列和行的 jQuery 插件 不过这并不影响使用鸭! 看这里:https://github.com/zhuwansu/table-ext.js 一个简单的示范 html <t ...

    4. 新上手jupyterlab安装及问题解决

      最近jupyter notebook又出了一个新玩法:jupyterlab但是很多小伙伴和我一样,在安装的时候出现了很多问题,于是乎我总结了一下,希望给大家带来帮助 首先,最好保持你的浏览器是最新的版 ...

    5. 临近年关,修复ASPNETCore因浏览器内核版本引发的单点登陆故障

      临近年关,咨询师提出360,搜狗急速浏览器无法单点登陆到公司核心产品WD, 报重定向过多. 现象 经过测试, 出现单点登陆故障的是搜狗,360等主打双核(默认Chrome内核)的浏览器, 较新式的Ed ...

    6. requests请求

      requests:伪造浏览器请求 请求 1.get requests.get( url='', params={ 'k1': ''v1, 'k2': 'v2' } ) 即 url?k1=k2& ...

    7. java.lang.IllegalArgumentException: clusterListener can not be null

      Caused by: org.springframework.beans.BeanInstantiationException: Failed to instantiate [com.mongodb. ...

    8. octave在win上和linux上配置syms

      octave是类似matlab的一个科学计算工具集.需要用到积分.微分.求导的时候,需要连接python3的sympy. windows上先安装好python3,然后pip安装Sympy.具体过程: ...

    9. Frameworks.Entity.Core 4

      Project.Core\Frameworks.Entity.Core\Commons\ 1 AutoMapperExtension.cs AutoMapper扩展方法 2枚举类型扩展方法EnumEx ...

    10. Frameworks.Entity.Core 6 Specification

      Specification internal 1 A logic AND Specification密封类AndSpecification<T>继承 抽象类CompositeSpecifi ...