描述

斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、34...

规则 : 有N个数,第i个数的值 N(i)= N(i-1) + N(i-2)

需求: 给出下标i ,求第i 的个数的值

例如 : 2 = 1+1

3 = 2+1

5 = 3+2

8 = 5 + 3

...

用php写

递归求解

function get($index){
if ($index < 3 )return 1;
return get($index-1)+get($index-2);
}
echo get(10);

指数级的时间复杂度

优化解法

$n_1 = 1;
$n_2 = $n_1;
$n_3 =$n_1 + $n_2;
$n_4 = $n_3 + $n_2;
$n_5 = $n_4 + $n_3;
.....

n1,n2 是固定的1,

n3是n1+n2,计算了1次

n4 是n3 + n2 计算了2次

n5 是 n4+ n3 计算了3次

那么第n个数就是第n-1 个数+第n-2个数,计算了n-2次.这样复杂度就变成了O(n),可以写一个for循环。我们需要保留第n-1个数的值 NUM(n-1)和第n-2个数的值NUM(n-2)。

function getF($index)
{
if ($index < 3) return 1;
$n_1 = 1;
$n_2 = $n_1;
for ($i = 0; $i < $index - 2; $i++) {
$last = $n_1; // 保存上一次运算后 第n-2个数的值
$n_1 = $n_2; // 本次操作结束后 第n-1个数的值
$n_2 = $n_2 + $last; // 这里是第n-2个数的值 + 上一次 第n-1个数的值
}
return $n_2;
}

斐波那契数列(php实现)的更多相关文章

  1. C#求斐波那契数列第30项的值(递归和非递归)

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  2. 斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)

    对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围 ...

  3. js中的斐波那契数列法

    //斐波那契数列:1,2,3,5,8,13…… //从第3个起的第n个等于前两个之和 //解法1: var n1 = 1,n2 = 2; for(var i=3;i<101;i++){ var ...

  4. 剑指Offer面试题:8.斐波那契数列

    一.题目:斐波那契数列 题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项.斐波那契数列的定义如下: 二.效率很低的解法 很多C/C++/C#/Java语言教科书在讲述递归函数的时 ...

  5. 算法: 斐波那契数列C/C++实现

    斐波那契数列: 1,1,2,3,5,8,13,21,34,....     //求斐波那契数列第n项的值 //1,1,2,3,5,8,13,21,34... //1.递归: //缺点:当n过大时,递归 ...

  6. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  7. Python递归及斐波那契数列

    递归函数 在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数.举个例子,我们来计算阶乘 n! = 1 * 2 * 3 * ... * n,用函数 fact(n)表示,可 ...

  8. 简单Java算法程序实现!斐波那契数列函数~

    java编程基础--斐波那契数列 问题描述:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 思路:可能出现的情况:(1) n=1 ,一种方法 ;(2)n=2 ...

  9. js 斐波那契数列(兔子问题)

    对于JS初学者来说,斐波那契数列一直是个头疼的问题,总是理不清思路. 希望看完这篇文章之后会对你有帮助. 什么是斐波那契数列 : 答: 斐波那契数列,又称黄金分割数列.因数学家列昂纳多·斐波那契(Le ...

  10. 剑指offer三: 斐波拉契数列

    斐波拉契数列是指这样一个数列: F(1)=1; F(2)=1; F(n)=F(n-1)+F(n); public class Solution { public int Fibonacci(int n ...

随机推荐

  1. schedule of 2016-09-26~2016-10-02(Monday~Sunday)——1st semester of 2nd Grade

    2016/9/26 Monday 1.make ppt for this afternoon's group meeting 2.ask teacher Xiqi&Liu some probl ...

  2. opensuse安装Tomcat碰到的问题

    已经安装好JDE,并配置好环境变量 从官网下载Tomcat tar包,解压到用户目录,进入运行bin下的start.sh,显示运行成功,但是浏览器中输入localhost:8080连接不上 检查一番发 ...

  3. kuangbin专题 专题九 连通图 Strongly connected HDU - 4635

    题目链接:https://vjudge.net/problem/HDU-4635 题目:有向图,给定若干个连通图,求最多还能添加几条边,添完边后,图仍然要满足 (1)是简单图,即没有重边或者自环 (2 ...

  4. Java 集合源代码——ArrayList

    (1)可以查看大佬们的 详细源码解析 : 连接地址为 : https://blog.csdn.net/zhumingyuan111/article/details/78884746 (2) Array ...

  5. 一文熟练使用python mock

    mock作为python测试模拟对象工具,在单元测试当中使用较多,官方文档详细不够精简,这篇文章介绍mock常用的用法,以下为引用全文,留给自己和有需要的人查阅. https://realpython ...

  6. postgresql gin索引使用

    由于属于老项目,postgresql使用版本9.6,主要解决‘%name%"查询无法使用索引问题.pg_trgm模块提供函数和操作符测定字母,数字,文本基于三元模型匹配的相似性, 还有支持快 ...

  7. 异数OS国产CPU平台移植项目需求分析

    异数OS国产CPU平台移植项目需求分析 目录 异数OS国产CPU平台移植项目需求分析 项目立项背景 项目需求分析 异数OS性能指标简介 1.TCP协议栈性能测试 2.异数OS-织梦师-水母 消息队列性 ...

  8. 【Flink】Flink作业调度流程分析

    1. 概述 当向Flink集群提交用户作业时,从用户角度看,只需要作业处理逻辑正确,输出正确的结果即可:而不用关心作业何时被调度的,作业申请的资源又是如何被分配的以及作业何时会结束:但是了解作业在运行 ...

  9. 开发环境Vue访问后端接口教程(前后端分离开发,端口不同下跨域访问)

    原理:开发环境下的跨域:在node.js上实现请求转发,vue前端通过axios请求到node.js上,node.js将请求转发到后端,反之.响应也是,先到node.js上,然后转发vue-cil项目 ...

  10. qsort 函数笔记

    函数声明 void qsort(void *base, size_t nitems, size_t size, int (*compare)(const void *, const void*)); ...