http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt

https://arachnoid.com/BiQuadDesigner/index.html

https://blog.csdn.net/hunterhuang2013/article/details/64443718

         Cookbook formulae for audio EQ biquad filter coefficients
----------------------------------------------------------------------------
by Robert Bristow-Johnson <rbj@audioimagination.com> All filter transfer functions were derived from analog prototypes (that
are shown below for each EQ filter type) and had been digitized using the
Bilinear Transform. BLT frequency warping has been taken into account for
both significant frequency relocation (this is the normal "prewarping" that
is necessary when using the BLT) and for bandwidth readjustment (since the
bandwidth is compressed when mapped from analog to digital using the BLT). First, given a biquad transfer function defined as: b0 + b1*z^-1 + b2*z^-2
H(z) = ------------------------ (Eq 1)
a0 + a1*z^-1 + a2*z^-2 This shows 6 coefficients instead of 5 so, depending on your architechture,
you will likely normalize a0 to be 1 and perhaps also b0 to 1 (and collect
that into an overall gain coefficient). Then your transfer function would
look like: (b0/a0) + (b1/a0)*z^-1 + (b2/a0)*z^-2
H(z) = --------------------------------------- (Eq 2)
1 + (a1/a0)*z^-1 + (a2/a0)*z^-2 or 1 + (b1/b0)*z^-1 + (b2/b0)*z^-2
H(z) = (b0/a0) * --------------------------------- (Eq 3)
1 + (a1/a0)*z^-1 + (a2/a0)*z^-2 The most straight forward implementation would be the "Direct Form 1"
(Eq 2): y[n] = (b0/a0)*x[n] + (b1/a0)*x[n-1] + (b2/a0)*x[n-2]
- (a1/a0)*y[n-1] - (a2/a0)*y[n-2] (Eq 4) This is probably both the best and the easiest method to implement in the
56K and other fixed-point or floating-point architechtures with a double
wide accumulator. Begin with these user defined parameters: Fs (the sampling frequency) f0 ("wherever it's happenin', man." Center Frequency or
Corner Frequency, or shelf midpoint frequency, depending
on which filter type. The "significant frequency".) dBgain (used only for peaking and shelving filters) Q (the EE kind of definition, except for peakingEQ in which A*Q is
the classic EE Q. That adjustment in definition was made so that
a boost of N dB followed by a cut of N dB for identical Q and
f0/Fs results in a precisely flat unity gain filter or "wire".) _or_ BW, the bandwidth in octaves (between -3 dB frequencies for BPF
and notch or between midpoint (dBgain/2) gain frequencies for
peaking EQ) _or_ S, a "shelf slope" parameter (for shelving EQ only). When S = 1,
the shelf slope is as steep as it can be and remain monotonically
increasing or decreasing gain with frequency. The shelf slope, in
dB/octave, remains proportional to S for all other values for a
fixed f0/Fs and dBgain. Then compute a few intermediate variables: A = sqrt( 10^(dBgain/20) )
= 10^(dBgain/40) (for peaking and shelving EQ filters only) w0 = 2*pi*f0/Fs cos(w0)
sin(w0) alpha = sin(w0)/(2*Q) (case: Q)
= sin(w0)*sinh( ln(2)/2 * BW * w0/sin(w0) ) (case: BW)
= sin(w0)/2 * sqrt( (A + 1/A)*(1/S - 1) + 2 ) (case: S) FYI: The relationship between bandwidth and Q is
1/Q = 2*sinh(ln(2)/2*BW*w0/sin(w0)) (digital filter w BLT)
or 1/Q = 2*sinh(ln(2)/2*BW) (analog filter prototype) The relationship between shelf slope and Q is
1/Q = sqrt((A + 1/A)*(1/S - 1) + 2) 2*sqrt(A)*alpha = sin(w0) * sqrt( (A^2 + 1)*(1/S - 1) + 2*A )
is a handy intermediate variable for shelving EQ filters. Finally, compute the coefficients for whichever filter type you want:
(The analog prototypes, H(s), are shown for each filter
type for normalized frequency.) LPF: H(s) = 1 / (s^2 + s/Q + 1) b0 = (1 - cos(w0))/2
b1 = 1 - cos(w0)
b2 = (1 - cos(w0))/2
a0 = 1 + alpha
a1 = -2*cos(w0)
a2 = 1 - alpha HPF: H(s) = s^2 / (s^2 + s/Q + 1) b0 = (1 + cos(w0))/2
b1 = -(1 + cos(w0))
b2 = (1 + cos(w0))/2
a0 = 1 + alpha
a1 = -2*cos(w0)
a2 = 1 - alpha BPF: H(s) = s / (s^2 + s/Q + 1) (constant skirt gain, peak gain = Q) b0 = sin(w0)/2 = Q*alpha
b1 = 0
b2 = -sin(w0)/2 = -Q*alpha
a0 = 1 + alpha
a1 = -2*cos(w0)
a2 = 1 - alpha BPF: H(s) = (s/Q) / (s^2 + s/Q + 1) (constant 0 dB peak gain) b0 = alpha
b1 = 0
b2 = -alpha
a0 = 1 + alpha
a1 = -2*cos(w0)
a2 = 1 - alpha notch: H(s) = (s^2 + 1) / (s^2 + s/Q + 1) b0 = 1
b1 = -2*cos(w0)
b2 = 1
a0 = 1 + alpha
a1 = -2*cos(w0)
a2 = 1 - alpha APF: H(s) = (s^2 - s/Q + 1) / (s^2 + s/Q + 1) b0 = 1 - alpha
b1 = -2*cos(w0)
b2 = 1 + alpha
a0 = 1 + alpha
a1 = -2*cos(w0)
a2 = 1 - alpha peakingEQ: H(s) = (s^2 + s*(A/Q) + 1) / (s^2 + s/(A*Q) + 1) b0 = 1 + alpha*A
b1 = -2*cos(w0)
b2 = 1 - alpha*A
a0 = 1 + alpha/A
a1 = -2*cos(w0)
a2 = 1 - alpha/A lowShelf: H(s) = A * (s^2 + (sqrt(A)/Q)*s + A)/(A*s^2 + (sqrt(A)/Q)*s + 1) b0 = A*( (A+1) - (A-1)*cos(w0) + 2*sqrt(A)*alpha )
b1 = 2*A*( (A-1) - (A+1)*cos(w0) )
b2 = A*( (A+1) - (A-1)*cos(w0) - 2*sqrt(A)*alpha )
a0 = (A+1) + (A-1)*cos(w0) + 2*sqrt(A)*alpha
a1 = -2*( (A-1) + (A+1)*cos(w0) )
a2 = (A+1) + (A-1)*cos(w0) - 2*sqrt(A)*alpha highShelf: H(s) = A * (A*s^2 + (sqrt(A)/Q)*s + 1)/(s^2 + (sqrt(A)/Q)*s + A) b0 = A*( (A+1) + (A-1)*cos(w0) + 2*sqrt(A)*alpha )
b1 = -2*A*( (A-1) + (A+1)*cos(w0) )
b2 = A*( (A+1) + (A-1)*cos(w0) - 2*sqrt(A)*alpha )
a0 = (A+1) - (A-1)*cos(w0) + 2*sqrt(A)*alpha
a1 = 2*( (A-1) - (A+1)*cos(w0) )
a2 = (A+1) - (A-1)*cos(w0) - 2*sqrt(A)*alpha FYI: The bilinear transform (with compensation for frequency warping)
substitutes: 1 1 - z^-1
(normalized) s <-- ----------- * ----------
tan(w0/2) 1 + z^-1 and makes use of these trig identities: sin(w0) 1 - cos(w0)
tan(w0/2) = ------------- (tan(w0/2))^2 = -------------
1 + cos(w0) 1 + cos(w0) resulting in these substitutions: 1 + cos(w0) 1 + 2*z^-1 + z^-2
1 <-- ------------- * -------------------
1 + cos(w0) 1 + 2*z^-1 + z^-2 1 + cos(w0) 1 - z^-1
s <-- ------------- * ----------
sin(w0) 1 + z^-1 1 + cos(w0) 1 - z^-2
= ------------- * -------------------
sin(w0) 1 + 2*z^-1 + z^-2 1 + cos(w0) 1 - 2*z^-1 + z^-2
s^2 <-- ------------- * -------------------
1 - cos(w0) 1 + 2*z^-1 + z^-2 The factor: 1 + cos(w0)
-------------------
1 + 2*z^-1 + z^-2 is common to all terms in both numerator and denominator, can be factored
out, and thus be left out in the substitutions above resulting in: 1 + 2*z^-1 + z^-2
1 <-- -------------------
1 + cos(w0) 1 - z^-2
s <-- -------------------
sin(w0) 1 - 2*z^-1 + z^-2
s^2 <-- -------------------
1 - cos(w0) In addition, all terms, numerator and denominator, can be multiplied by a
common (sin(w0))^2 factor, finally resulting in these substitutions: 1 <-- (1 + 2*z^-1 + z^-2) * (1 - cos(w0)) s <-- (1 - z^-2) * sin(w0) s^2 <-- (1 - 2*z^-1 + z^-2) * (1 + cos(w0)) 1 + s^2 <-- 2 * (1 - 2*cos(w0)*z^-1 + z^-2) The biquad coefficient formulae above come out after a little
simplification. Biquadratic difference equation flow graph
(horizontal = time, vertical = data flow):

// perform one filtering step
double filter(double x) {
y = b0 * x + b1 * x1 + b2 * x2 - a1 * y1 - a2 * y2;
x2 = x1;
x1 = x;
y2 = y1;
y1 = y;
return (y);
}

This table outlines the properties of the available filter types:

Filter Type Q adj Gain adj Comments Image
Bandpass Y N The most generally useful filter type.
Low-pass Y N For low-pass and high-pass biquadratic filters, one normally sets Q = 0.707 ($\frac{1}{\sqrt{2}}$) to achieve a Butterworth filter transfer function with a 3 DB drop at the specified operating frequency. Higher Q settings produce an often-undesirable peak near the center frequency and dynamic instability in operation.
High-pass Y N
Peak Y Y This filter is a bit tricky to set up, because both Q and gain are effective. The idea is that one can use the gain control to set a nonzero base gain level that applies to all frequencies, then use the frequency and Q controls to set a narrow peak to exceed that level. Note also that, with a negative gain setting, the relation between the plateau and peak is reversed.
Notch Y N This filter is more or less the opposite of the "Peak" filter — it creates a narrow rejection band, the width of which is set by the Q control. (But no plateau as with "Peak".)
Lowshelf N Y Lowshelf and highshelf filters provide a sort of "plateau" effect, under control of the gain setting, and not unlike the "Peak" filter described above. Note that negative gain settings reverse the identity of the filter — lowshelf becomes highshelf and the reverse.
Highshelf N Y

转载:EQ--biquad filter的更多相关文章

  1. Digital biquad filter

    Direct Form 1 The most straightforward implementation is the Direct Form 1, which has the following ...

  2. 【转载】CSS3 filter:drop-shadow滤镜与box-shadow区别应用

    文章转载自 张鑫旭-鑫空间-鑫生活 http://www.zhangxinxu.com/wordpress/ 原文链接:http://www.zhangxinxu.com/wordpress/?p=5 ...

  3. jquery 常用选择器 回顾 ajax() parent() parents() children() siblings() find() eq() has() filter() next()

    1. $.ajax() ajax 本身是异步操作,当需要将 异步 改为 同步时: async: false 2.parent()  父级元素  和  parents() 祖先元素 的区别 parent ...

  4. 【转载】CSS filter:hue-rotate色调旋转滤镜实现按钮批量生产

    文章转载自 张鑫旭-鑫空间-鑫生活 http://www.zhangxinxu.com/ 原文链接:https://www.zhangxinxu.com/wordpress/2018/11/css-f ...

  5. [转载]OpenFileDialog对话框Filter属性

    首先说明一个示例,分析一下Filter属性的构成:“ Excel文件|*.xls ”,前面的“Excel文件”成为标签,是一个可读的字符串,可以自定定义,“|*.xls”是筛选器,表示筛选文件夹中后缀 ...

  6. 【转载】Servlet Filter(过滤器)、Filter是如何实现拦截的、Filter开发入门

    Servlet Filter(过滤器).Filter是如何实现拦截的.Filter开发入门 Filter简介 Filter也称之为过滤器,它是Servlet技术中最激动人心的技术,WEB开发人员通过F ...

  7. 转载:Angular的filter总结

    过滤器(filter)正如其名,作用就是接收一个输入,通过某个规则进行处理,然后返回处理后的结果.主要用在数据的格式化上,例如获取一个数组 中的子集,对数组中的元素进行排序等.ng内置了一些过滤器,它 ...

  8. biquad filter实现

    原始频谱: LPF: HPF: 代码: #include<stdio.h> #include<stdlib.h> #include<errno.h> #includ ...

  9. 转载:polyphase filter

    http://www.ws.binghamton.edu/fowler/fowler%20personal%20page/ee521.htm http://www.ws.binghamton.edu/ ...

随机推荐

  1. PAT (Basic Level) Practice (中文)1056 组合数的和 (15 分)

    给定 N 个非 0 的个位数字,用其中任意 2 个数字都可以组合成 1 个 2 位的数字.要求所有可能组合出来的 2 位数字的和.例如给定 2.5.8,则可以组合出:25.28.52.58.82.85 ...

  2. 第二章 Spring MVC入门 —— 跟开涛学SpringMVC 读后感1

    2.1.Spring Web MVC是什么 Spring Web MVC是一种基于Java的实现了Web MVC设计模式的请求驱动类型的轻量级Web框架,即使用了MVC架构模式的思想,将web层进行职 ...

  3. window服务session隔离

    在window服务中抓取窗体是做不到的,因为window系统的session隔离机制:如果想要调用外部程序,可以通过 创建代理进程 进行操作(通过非托管代码CreateProcessAsUser函数进 ...

  4. php函数的巧妙应用

    直接切入正题: 1.extract();函数从数组中把变量导入到当前的符号表中 对于数组中的每个元素,键名用于变量名,键值用于变量值. 第二个参数 type 用于指定当某个变量已经存在,而数组中又有同 ...

  5. C#索引器学习笔记

    本笔记摘抄自:https://www.cnblogs.com/ArmyShen/archive/2012/08/27/2659405.html,记录一下学习过程以备后续查用. 索引器允许类或者结构的实 ...

  6. python 元组 列表 字典

    type()查看类型 //取整除 **幂 成员运算符: in  x在y序列中,就返回true 反之  not in 身份运算符: is is not 逻辑运算符 and or not 字符编码 问题 ...

  7. php实现简易留言板效果

    首先是Index页面效果图 index.php <?php header('content-type:text/html;charset=utf-8'); date_default_timezo ...

  8. java 类型判断

    //java 类型匹配测试 Circle circle = new Circle(); // circle rectangle 实现了 shape System.out.println(circle ...

  9. STM 32 内部功能回顾

    EXTI   外部中断 NVIC 嵌套的向量式中断控制器 AHB 是高级高性能内部总线,主要是用在CPU.DMA.DSP(数字信号处理) APB 是外围总线,I2C. 串口 APB 分为高速APB2( ...

  10. C++-POJ2234-Matches Game[Nim][SG函数]

    #include <set> #include <map> #include <cmath> #include <queue> #include < ...