作者要解决的问题

仍然是one-stage中的一个经典问题,正负、难易样本不均衡。因为anchor的原因,pos : neg>= 1 : 70。负样本大多比较简单,所以也导致了难易样本的问题。

Focal loss(CVPR2017)

Focal loss的解决方案

传统的交叉熵损失函数:
\[
L_{CE} = -[p^*(log(p) + (1-p^*)log(1-p)]
\]
\(p^*=\{0, 1\}\)为真实标签,\(p \in (0, 1)\)为网络的预测概率。可以看到,传统的交叉熵损失函数平等的看待正负样本。
Focal loss
\[
L = -[\alpha p^\gamma p^*log(p) + (1-\alpha)(1-p)^\gamma (1-p^*)log(1-p)]
\]
可以看到Focal loss引入了两个超参数\(\alpha, \gamma\),\(\alpha\)用来平衡正负样本,\(\gamma\)用来平衡难易样本。简单分析一下,加号的左侧是正样本的损失,右侧是负样本的损失。通过乘上不同的系数\((\alpha, 1-\alpha)\),来平衡正负样本。对于简单样本,其loss较小,概率值更接近真实标签,这样概率的\(\gamma\)次方越小,相反地,难样本的就会变大,使难样本的损失上升,使网络关注难样本。

Focal loss的不足

虽然Focal loss这篇论文也在一定程度上解决了正负样本不均衡的问题,但是Focal loss引入了两个超参数,调参费劲,且只能应用到box分类上,无法解决回归的问题。

设计思路

梯度与样本的关系

作者观察到难易样本的分布与梯度有着如下的关系,可以看到,梯度较小时(简单样本),样本数量非常多,梯度适中时,样本较少。另外值得注意的一点是,梯度在1左右的样本数量还是不少的。作者将这些样本视为异常值,解决特别难的样本会导致其他的样本准确率下降。

针对以上发现,作者采用梯度分布(梯度附近的样本数)来处理难易样本不平衡的问题。简单思路就是梯度小的样本数比较大,那就给他们乘上一个小系数,梯度大的样本少乘以一个大的系数。不过这个系数不是靠自己调的,而是根据样本的梯度分布来确定的。

梯度分布计算方法:将0-1的梯度切bin,计算每个bin内落入的样本数量。


其中\(\epsilon\)是每个bin的宽度,\(M\)是\(\epsilon\)的倒数,表示将0-1切分成多少个bin,\(R_{ind(g)}\)表示每个bin内落入的样本数,计算方法如下:

\[
R_{ind(g)} = \sum_{k=1}^{N} \delta(g_k,g) \quad \delta(g_k,g) =
\begin{cases}
1 \quad if \quad g-\frac{\epsilon}{2} <= g_k <= g+\frac{\epsilon}{2}\\
0 \quad otherwise
\end{cases}
\]

\[
\beta_i = \frac{N}{GD(g_i)}
\]
\(g\)是某点的梯度模,可以理解为以这一点创建一个bin,\(g_k\)是样本的梯度模,N是样本总数。
从上面式子可以看到,梯度分布越大,系数越小。

梯度模计算方法

具体的在二分类中,损失函数为上面提到的交叉熵函数
\[
L_{CE} = -[p^*(log(p) + (1-p^*)log(1-p)] \\
p=sigmoid(x)
\]
对x的梯度
\[
\begin{aligned}\frac{\partial L_{CE}}{\partial x} &= \frac{\partial L_{CE}}{\partial p} \times \frac{\partial p}{\partial x}\\&= (-\frac{p^*}{p} + \frac{1-p^*}{1-p}) \times p(1-p)\\&= p-p^*\end{aligned}
\]
定义梯度模\(g = |p-p^*|\)

改进

GHM-C损失函数

由此,作者提出分类的损失函数GHM-C
\[
L_{GHM-C} = \frac{1}{N}\sum\beta_i L_{CE}(p_i, p_{i}^{*})
\]

还是以这个图为例,在梯度较小时,样本数较大,梯度分布\(GD(g)\)较大,则系数较小,损失较小,这样就有效的减少了大量简单样本的作用。反之亦然。同样可以分析出特别难的样本也被抑制了。这一点也是作者希望看到的。
下面这张图的横坐标代表原先的梯度分布,纵坐标代表处理后的梯度分布。对比未经任何处理的CE曲线,在0附近的梯度,GHM-C处理后梯度被减小了,0.5左右的样本梯度被放大了,尤其值得一提的是,对于前面提到的异常样本,梯度同样被抑制了。对比Focal loss曲线,明显可以看出GHM-C更加优秀。

GHM-R损失函数

按理说像之前一样求下梯度分布就好了,不过这里有一个问题。
对于边框回归的传统损失函数smooth_L1

求梯度模
\(d= t_i - t_i^*\)

可以看到,当\(d>\delta\)时,梯度模横为1,无法衡量样本的难易程度。所以作者这里改了一下

d比较小的时候,类似于\(L_2\),d较大时候类似\(L_2\),和\(SL_1\)类似。最终的损失函数如下:

注意一点:回归的损失函数是只计算正样本的。

最终结果

COCO数据集上的比较

只有GHM-C的比较

只有GHM-R的比较

GHM论文笔记(CVPR2019)的更多相关文章

  1. Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)

    Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文, ...

  2. 论文笔记之:Visual Tracking with Fully Convolutional Networks

    论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...

  3. Deep Learning论文笔记之(八)Deep Learning最新综述

    Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完 ...

  4. Twitter 新一代流处理利器——Heron 论文笔记之Heron架构

    Twitter 新一代流处理利器--Heron 论文笔记之Heron架构 标签(空格分隔): Streaming-process realtime-process Heron Architecture ...

  5. Deep Learning论文笔记之(六)Multi-Stage多级架构分析

    Deep Learning论文笔记之(六)Multi-Stage多级架构分析 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些 ...

  6. Multimodal —— 看图说话(Image Caption)任务的论文笔记(一)评价指标和NIC模型

    看图说话(Image Caption)任务是结合CV和NLP两个领域的一种比较综合的任务,Image Caption模型的输入是一幅图像,输出是对该幅图像进行描述的一段文字.这项任务要求模型可以识别图 ...

  7. 论文笔记(1):Deep Learning.

    论文笔记1:Deep Learning         2015年,深度学习三位大牛(Yann LeCun,Yoshua Bengio & Geoffrey Hinton),合作在Nature ...

  8. 论文笔记(2):A fast learning algorithm for deep belief nets.

    论文笔记(2):A fast learning algorithm for deep belief nets. 这几天继续学习一篇论文,Hinton的A Fast Learning Algorithm ...

  9. 论文笔记:Towards Diverse and Natural Image Descriptions via a Conditional GAN

    论文笔记:Towards Diverse and Natural Image Descriptions via a Conditional GAN ICCV 2017 Paper: http://op ...

随机推荐

  1. PTA 6-14 用单向链表完成多项式运算(35分)

    输入两个多项式,计算它们的加.减及乘法, 将计算结果输出到屏幕上. 1) 输入:从键盘分两行分别输入两个多项式数据,每个多项式输入格式如下: n a1 m1 a2 m2 a3 m3 . .. ai m ...

  2. ElasticSearch快速入门

    知识储备 学习ElasticSearch之前可以先了解一下lucene,这里是我整理的一篇关于lucene的笔记(传送门),对搜索框架有兴趣的还可以了解一下另一款企业级搜索应用服务器---solr(传 ...

  3. JDK的下载及安装教程图解(超详细哦~)

    一.本人电脑系统介绍及JDK下载途径 1.先说明一下我的电脑为win10系统,64位操作系统~ 2.我选择下载的JDK版本为1.8版本.给大家来两个下载渠道,方便大家的下载~ JDK官网:https: ...

  4. jenkins集成gitlab

     一.配置jenkins 1.安装Gitlab Hook Plugin )生成随机token 在系统中生成 openssl rand -hex 0f2a47c861133916d2e299e3 )创建 ...

  5. selenium 操作下拉处理

    操作下拉框处理 在网页中,有时候会遇到下拉框处理,这时候使用Webdriver提供的select类来处理. ##操作下拉框处理 #coding = utf-8 from selenium import ...

  6. bootstrap 图片类 和 按钮类 部分

    bootstrap框架,来自 Twitter,基于 html ,css ,js.简介灵活. 首先引入  bootstrap.js   bootstrap.css  及 jquery.js  这里不考虑 ...

  7. 《Head first设计模式》之外观模式

    外观模式提供了一个统一的接口,用来访问子系统中的一群接口.外观定义了一个高层接口,让子系统更容易使用. 我们已经知道适配器模式是如何将一个类的接口转换成另一个符合客户期望的接口的.现在我们要看一个改变 ...

  8. apache主配置文件httpd.conf详解

    [root@lamp conf]# vi httpd.conf.bak 1 # 2 # This is the main Apache HTTP server configuration file. ...

  9. [CSS]important提升直选标签优先级

    <style> #identity{ color: purple; } p { color: yellowgreen !important; } </style> <!- ...

  10. MyBatis 与Ibatis 区别

    Ibatis 是 Mybatis 的前身,两者都是优秀的持久层框架. 区别: 1.mybatis 实现接口绑定,不需要具体接口实现类.但是需要在xml文件中 的 namespace 绑定具体的接口. ...