【CF285E】Positions in Permutations
刷水题涨信心
显然这是个广义容斥,我们现在算一下至少有\(i\)个完美数的方案数就好了
这\(1000\)的数据范围显然在暗示\(n^2\)的dp
我们注意到这个条件大概就是\(P_i=i-1\)或\(P_i=i+1\),于是我们可以想象成左右两边各\(n\)个点去完成一个一一匹配
设\(dp[i][j][k][p]\)表示左边第\(i\)个数已经匹配完了,一共形成了\(j\)对完美数,\(k\)表示右边对应的第\(i\)个位置的使用状态\(0/1\),\(p\)表示右边第\(i+1\)个数的使用状态
转移显然
代码
#include<cstdio>
#define re register
const int mod=1e9+7;
const int maxn=1005;
int n,m,tot;
int dp[maxn][maxn][2][2],ans[maxn];
int c[maxn][maxn],fac[maxn];
int main() {
scanf("%d%d",&n,&m);fac[0]=1;
for(re int i=0;i<=n;i++) c[i][0]=c[i][i]=1;
for(re int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%mod;
for(re int i=2;i<=n;i++)
for(re int j=1;j<i;j++) c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
dp[1][0][0][0]=1,dp[1][1][0][1]=1;
for(re int i=1;i<n;i++)
for(re int j=0;j<=i;j++)
for(re int k=0;k<2;k++)
for(re int p=0;p<2;p++) {
if(!dp[i][j][k][p]) continue;
dp[i+1][j+1][p][1]=(dp[i+1][j+1][p][1]+dp[i][j][k][p])%mod;
if(!k) dp[i+1][j+1][p][0]=(dp[i+1][j+1][p][0]+dp[i][j][k][p])%mod;
dp[i+1][j][p][0]=(dp[i+1][j][p][0]+dp[i][j][k][p])%mod;
}
for(re int i=0;i<=n;i++)
ans[i]=(dp[n][i][0][0]+dp[n][i][1][0])%mod;
for(re int j=m;j<=n;j++)
tot=(tot+1ll*((j-m)&1?-1:1)*c[j][m]*fac[n-j]%mod*ans[j]%mod)%mod;
printf("%d\n",(tot+mod)%mod);
return 0;
}
【CF285E】Positions in Permutations的更多相关文章
- 【CF285E】Positions in Permutations(动态规划,容斥)
[CF285E]Positions in Permutations(动态规划,容斥) 题面 CF 洛谷 题解 首先发现恰好很不好算,所以转成至少,这样子只需要确定完一部分数之后剩下随意补. 然后套一个 ...
- 【CF715E】Complete the Permutations(容斥,第一类斯特林数)
[CF715E]Complete the Permutations(容斥,第一类斯特林数) 题面 CF 洛谷 给定两个排列\(p,q\),但是其中有些位置未知,用\(0\)表示. 现在让你补全两个排列 ...
- 【CF715E】Complete the Permutations 第一类斯特林数
题目大意 有两个排列 \(p,q\),其中有一些位置是空的. 你要补全这两个排列. 定义 \(s(p,q)\) 为 每次交换 \(p\) 中的两个数,让 \(p=q\) 的最小操作次数. 求 \(s( ...
- 【cdq分治】【CF1093E】 Intersection of Permutations
传送门 果然前两天写完咕咕咕那个题的题解以后博客就开始咕咕咕了-- Description 给定整数 \(n\) 和两个 \(1~\sim~n\) 的排列 \(A,B\). \(m\) 个操作,操作有 ...
- 【LeetCode】Permutations 解题报告
全排列问题.经常使用的排列生成算法有序数法.字典序法.换位法(Johnson(Johnson-Trotter).轮转法以及Shift cursor cursor* (Gao & Wang)法. ...
- 【CF736D】Permutations 线性代数+高斯消元
[CF736D]Permutations 题意:有一个未知长度为n的排列和m个条件,第i个条件$(a_i,b_i)$表示第$a_i$个位置上的数可以为$b_i$.保证最终合法的排列的个数是奇数.现在有 ...
- 【LeetCode】Permutations II 解题报告
[题目] Given a collection of numbers that might contain duplicates, return all possible unique permuta ...
- 【UVA 11077】 Find the Permutations (置换+第一类斯特林数)
Find the Permutations Sorting is one of the most used operations in real life, where Computer Scienc ...
- 【题解】POJ2279 Mr.Young′s Picture Permutations dp
[题解]POJ2279 Mr.Young′s Picture Permutations dp 钦定从小往大放,然后直接dp. \(dp(t1,t2,t3,t4,t5)\)代表每一行多少人,判断边界就能 ...
随机推荐
- 人脸识别--Open set和Close set的区别
训练和测试人脸识别分类器时,总会提到Open-set和Close-set.这俩词到底是什么概念呢?有什么区别呢? 所谓close-set,就是所有的测试集都在训练集中出现过.所以每次的预测直接得出测试 ...
- Postgraduate
https://account.chsi.com.cn/passport/login?entrytype=yzgr&service=https%3A%2F%2Fyz.chsi.com.cn%2 ...
- bzoj 1196: [HNOI2006]公路修建问题(二分+贪心)
传送门 解题思路 看到最大,肯定要先想二分答案.二分之后首先从小到大枚举\(k\)个小于\(lim\)的所有一级公路,然后用并查集连到一起,然后就在剩下的里面从小到大找n-1-k个二级公路,模仿最小生 ...
- linux安装splunk-enterprise
一.介绍 Splunk是一款功能强大,功能强大且完全集成的软件,用于实时企业日志管理,可收集,存储,搜索,诊断和报告任何日志和机器生成的数据,包括结构化,非结构化和复杂的多行应用程序日志. 它允许您以 ...
- VS2010-MFC(对话框:文件对话框)
转自:http://www.jizhuomi.com/software/173.html 一 文件对话框的分类 文件对话框分为打开文件对话框和保存文件对话框,相信大家在Windows系统中 ...
- ASP.NET的底层体系1
文章引导 1.ASP.NET的底层体系1 2.ASP.NET的底层体系2 引言: 学习ASP.NET,要想做的更好,不了解ASP.NET是不行的.一个有理想的程序员都会像挤压海绵一样,努力的去学习和获 ...
- 三种方法实现MNIST 手写数字识别
MNIST数据集下载: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist ...
- vue 绑定多个class
<div :class="[box,shadow]"></div> 或 :后面跟条件,条件成立则添加class,否则不添加 :class="[{' ...
- JS动画完美框架
html部分 <!DOCTYPE html> <html lang="en"> <head> <link href="../cs ...
- selenium基础(鼠标和键盘事件)
selenium鼠标和键盘的操作事件 webdriver常见的几种操作方法 clear():清楚文本文字 send_keys(values):模拟按键输入,values是输入的内容 click():单 ...