题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3555

题目大意:求 \([1,n]\) 范围内有多少数包含“49”。

解题思路:

这个问题我们可以分两种解法来考虑:第一种是求不包含“49”的数的数量,用后减一下;另一种就是直接求包含“49”的数的数量。

解法1:求多少数不包含“49”

这种方法我们先通过数位DP求出 \([0,n]\) 区间范围内有多少数不包含“49”(假设数量为 \(x\) ),然后可以得到答案为 \(n+1-x\) 。

我们可以设计一个函数 dfs(int pos, int stat, bool limit) 来返回区间 \([0,n]\) 范围内有多少数不包含“49”,其中:

  • pos 表示当前所处数位;
  • stat 表示前一位的数是不是‘4’(如果前一位是‘4’当前位是‘9’则凑成“49”);
  • limit 用于标记当前是否受限制(true:受限制;false:不受限制)。

实现代码如下:

#include <bits/stdc++.h>
using namespace std;
long long f[66][2], n;
int T, a[66];
void init() {
memset(f, -1, sizeof(f));
}
long long dfs(int pos, int stat, bool limit) {
if (pos < 0) return 1;
if (!limit && f[pos][stat] != -1) return f[pos][stat];
int up = limit ? a[pos] : 9;
long long tmp = 0;
for (int i = 0; i <= up; i ++) {
if (stat && i == 9) continue;
tmp += dfs(pos-1, i==4, limit && i == up);
}
if (!limit) f[pos][stat] = tmp;
return tmp;
}
long long get_num(long long x) {
int pos = 0;
while (x) {
a[pos++] = x % 10;
x /= 10;
}
return dfs(pos-1, 0, true);
}
int main() {
init();
scanf("%d", &T);
while (T --) {
scanf("%lld", &n);
printf("%lld\n", n+1-get_num(n));
}
return 0;
}

解法2:求多少数包含“49”

相对解法1是间接的方式进行求解。我们现在这种方式则是 直接 求解 \([0,n]\) 范围内有多少个数包含“49”。

我们可以设计一个函数 dfs(int pos, int stat, bool limit) 来返回区间 \([0,n]\) 范围内有多少数不包含“49”,其中:

  • pos 表示当前所处数位;
  • stat 表示前一位的数是不是‘4’(如果前一位是‘4’当前位是‘9’则凑成“49”);
  • limit 用于标记当前是否受限制(true:受限制;false:不受限制)。

虽然是一样的,但是在处理的时候统计结果的方式却不一样。

这里特别需要注意的是限制条件和非限制条件下不同的处理。

假设我们现在要找的是区间 \([0,n]\) 范围内有多少数包含“49” 遍历到 pos 位并且 pos+1 位是‘4’, pos 位是‘9’,则我们可以得知:

  1. 如果当前处于限制状态下,则之后有 \(n \% 10^{pos} + 1\) 个数满足条件;
  2. 如果当前处于非限制状态下,则之后有 \(10^{pos}\) 个数满足条件。

实现代码如下:

#include <bits/stdc++.h>
using namespace std;
long long f[66][2], n;
int T, a[66];
void init() {
memset(f, -1, sizeof(f));
}
long long pow10(int a) {
if (a == 0) return 1;
if (a == 1) return 10;
long long t = pow10(a/2);
return t * t * (a%2 ? 10 : 1);
}
long long dfs(int pos, int stat, bool limit) {
if (pos < 0) return 0; // 返回0说明没找到包含49的
if (!limit && f[pos][stat] != -1) return f[pos][stat];
int up = limit ? a[pos] : 9;
long long tmp = 0;
for (int i = 0; i <= up; i ++) {
if (stat && i == 9) { // 说明接下来pos位的10的pos次方个数都满足条件
// tmp += pow10(pos); // 直接这么写是错的,此时也要考虑边界条件限制
// 修正如下
if (limit) tmp += n % pow10(pos) + 1;
else tmp += pow10(pos);
}
else tmp += dfs(pos-1, i==4, limit && i == up);
}
if (!limit) f[pos][stat] = tmp;
return tmp;
}
long long get_num(long long x) {
int pos = 0;
while (x) {
a[pos++] = x % 10;
x /= 10;
}
return dfs(pos-1, 0, true);
}
int main() {
init();
scanf("%d", &T);
while (T --) {
scanf("%lld", &n);
printf("%lld\n", get_num(n));
}
return 0;
}

HDU3555 Bomb 题解 数位DP的更多相关文章

  1. [Hdu3555] Bomb(数位DP)

    Description 题意就是找0到N有多少个数中含有49. \(1\leq N \leq2^{63}-1\) Solution 数位DP,与hdu3652类似 \(F[i][state]\)表示位 ...

  2. 【Hdu3555】 Bomb(数位DP)

    Description 题意就是找0到N有多少个数中含有49. \(1\leq N \leq2^{63}-1\) Solution 数位DP,与hdu3652类似 \(F[i][state]\)表示位 ...

  3. HDU 3555 Bomb(数位DP)

    Bomb Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others) Total Subm ...

  4. HDU 3555 Bomb(数位DP模板啊两种形式)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3555 Problem Description The counter-terrorists found ...

  5. 动态规划晋级——HDU 3555 Bomb【数位DP详解】

    转载请注明出处:http://blog.csdn.net/a1dark 分析:初学数位DP完全搞不懂.很多时候都是自己花大量时间去找规律.记得上次网络赛有道数位DP.硬是找规律给A了.那时候完全不知数 ...

  6. POJ-2282题解&数位DP总结

    一.题意 给定一个区间[a, b](注意输入的时候可能a > b,所以,在数据输入后,要先比较a和b,如果a > b,交换a和b的值),统计这个区间里面,数位上有多少个0.多少个1.--. ...

  7. luogu2657-Windy数题解--数位DP

    题目链接 https://www.luogu.org/problemnew/show/P2657 分析 第一道数位DP题,发现有点意思 DP求\([L,R]\)区间内的XXX个数,很套路地想到前缀和, ...

  8. 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP

    题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...

  9. 洛谷P3413 SAC#1 - 萌数 题解 数位DP

    题目链接:https://www.luogu.com.cn/problem/P3413 题目大意: 定义萌数指:满足"存在长度至少为2的回文子串"的数. 求区间 \([L,R]\) ...

随机推荐

  1. 生成所有2^n个长度为n的比特串

    #include<stdio.h> void BitstringsRec(int n); int A[1000]; int G_N; int main(void) { while(1) { ...

  2. AtCoder Beginner Contest 075 C Bridge(割边)

    求割边个数.Tarjan的板子.. #include <bits/stdc++.h> using namespace std; const int MAXN = 55; const int ...

  3. TabHost选项卡的实现(二):使用Fragment实现

    在上一篇博客<TabHost选项卡的实现(一):使用TabActivity实现>中,讲解了如何使用TabActivity创建管理选项卡,但是,通过TabActivity创建选项卡的方式已经 ...

  4. hdu 1016 Prime Ring Problem(dfs)

    Prime Ring Problem Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  5. Vue 路由规则--传参数

    1,query方法去获取参数 <!DOCTYPE html> <html lang="en"> <head> <meta charset= ...

  6. Codeforces Round #340 (Div. 2) B. Chocolate

    题意:一段01串 分割成段 每段只能有一个1 问一段串有多少种分割方式 思路:两个1之间有一个0就有两种分割方式,然后根据分步乘法原理来做. (不过这里有一组0 1 0这种数据的话就不好直接处理,所以 ...

  7. 2018-2-13-WPF-DelegateCommand-出现Specified-cast-is-not-valid

    title author date CreateTime categories WPF DelegateCommand 出现Specified cast is not valid lindexi 20 ...

  8. win10 uwp 手把手教你使用 asp dotnet core 做 cs 程序

    本文是一个非常简单的博客,让大家知道如何使用 asp dot net core 做后台,使用 UWP 或 WPF 等做前台. 本文因为没有什么业务,也不想做管理系统,所以看到起来是很简单. Visua ...

  9. python基础六之编码

    python中编码的特点: 1,各个编码之间的二进制是不能互相识别的,会产生乱码 2,文件的储存和传输是不能用Unicode的 python3的编码 在python3中字符串在内存中是用Unicode ...

  10. win10 uwp win2d CanvasVirtualControl 与 CanvasAnimatedControl

    本文来告诉大家 CanvasVirtualControl ,在什么时候使用这个控件. 在之前的入门教程win10 uwp win2d 入门 看这一篇就够了我直接用的是CanvasControl,实际上 ...