题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3555

题目大意:求 \([1,n]\) 范围内有多少数包含“49”。

解题思路:

这个问题我们可以分两种解法来考虑:第一种是求不包含“49”的数的数量,用后减一下;另一种就是直接求包含“49”的数的数量。

解法1:求多少数不包含“49”

这种方法我们先通过数位DP求出 \([0,n]\) 区间范围内有多少数不包含“49”(假设数量为 \(x\) ),然后可以得到答案为 \(n+1-x\) 。

我们可以设计一个函数 dfs(int pos, int stat, bool limit) 来返回区间 \([0,n]\) 范围内有多少数不包含“49”,其中:

  • pos 表示当前所处数位;
  • stat 表示前一位的数是不是‘4’(如果前一位是‘4’当前位是‘9’则凑成“49”);
  • limit 用于标记当前是否受限制(true:受限制;false:不受限制)。

实现代码如下:

#include <bits/stdc++.h>
using namespace std;
long long f[66][2], n;
int T, a[66];
void init() {
memset(f, -1, sizeof(f));
}
long long dfs(int pos, int stat, bool limit) {
if (pos < 0) return 1;
if (!limit && f[pos][stat] != -1) return f[pos][stat];
int up = limit ? a[pos] : 9;
long long tmp = 0;
for (int i = 0; i <= up; i ++) {
if (stat && i == 9) continue;
tmp += dfs(pos-1, i==4, limit && i == up);
}
if (!limit) f[pos][stat] = tmp;
return tmp;
}
long long get_num(long long x) {
int pos = 0;
while (x) {
a[pos++] = x % 10;
x /= 10;
}
return dfs(pos-1, 0, true);
}
int main() {
init();
scanf("%d", &T);
while (T --) {
scanf("%lld", &n);
printf("%lld\n", n+1-get_num(n));
}
return 0;
}

解法2:求多少数包含“49”

相对解法1是间接的方式进行求解。我们现在这种方式则是 直接 求解 \([0,n]\) 范围内有多少个数包含“49”。

我们可以设计一个函数 dfs(int pos, int stat, bool limit) 来返回区间 \([0,n]\) 范围内有多少数不包含“49”,其中:

  • pos 表示当前所处数位;
  • stat 表示前一位的数是不是‘4’(如果前一位是‘4’当前位是‘9’则凑成“49”);
  • limit 用于标记当前是否受限制(true:受限制;false:不受限制)。

虽然是一样的,但是在处理的时候统计结果的方式却不一样。

这里特别需要注意的是限制条件和非限制条件下不同的处理。

假设我们现在要找的是区间 \([0,n]\) 范围内有多少数包含“49” 遍历到 pos 位并且 pos+1 位是‘4’, pos 位是‘9’,则我们可以得知:

  1. 如果当前处于限制状态下,则之后有 \(n \% 10^{pos} + 1\) 个数满足条件;
  2. 如果当前处于非限制状态下,则之后有 \(10^{pos}\) 个数满足条件。

实现代码如下:

#include <bits/stdc++.h>
using namespace std;
long long f[66][2], n;
int T, a[66];
void init() {
memset(f, -1, sizeof(f));
}
long long pow10(int a) {
if (a == 0) return 1;
if (a == 1) return 10;
long long t = pow10(a/2);
return t * t * (a%2 ? 10 : 1);
}
long long dfs(int pos, int stat, bool limit) {
if (pos < 0) return 0; // 返回0说明没找到包含49的
if (!limit && f[pos][stat] != -1) return f[pos][stat];
int up = limit ? a[pos] : 9;
long long tmp = 0;
for (int i = 0; i <= up; i ++) {
if (stat && i == 9) { // 说明接下来pos位的10的pos次方个数都满足条件
// tmp += pow10(pos); // 直接这么写是错的,此时也要考虑边界条件限制
// 修正如下
if (limit) tmp += n % pow10(pos) + 1;
else tmp += pow10(pos);
}
else tmp += dfs(pos-1, i==4, limit && i == up);
}
if (!limit) f[pos][stat] = tmp;
return tmp;
}
long long get_num(long long x) {
int pos = 0;
while (x) {
a[pos++] = x % 10;
x /= 10;
}
return dfs(pos-1, 0, true);
}
int main() {
init();
scanf("%d", &T);
while (T --) {
scanf("%lld", &n);
printf("%lld\n", get_num(n));
}
return 0;
}

HDU3555 Bomb 题解 数位DP的更多相关文章

  1. [Hdu3555] Bomb(数位DP)

    Description 题意就是找0到N有多少个数中含有49. \(1\leq N \leq2^{63}-1\) Solution 数位DP,与hdu3652类似 \(F[i][state]\)表示位 ...

  2. 【Hdu3555】 Bomb(数位DP)

    Description 题意就是找0到N有多少个数中含有49. \(1\leq N \leq2^{63}-1\) Solution 数位DP,与hdu3652类似 \(F[i][state]\)表示位 ...

  3. HDU 3555 Bomb(数位DP)

    Bomb Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others) Total Subm ...

  4. HDU 3555 Bomb(数位DP模板啊两种形式)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3555 Problem Description The counter-terrorists found ...

  5. 动态规划晋级——HDU 3555 Bomb【数位DP详解】

    转载请注明出处:http://blog.csdn.net/a1dark 分析:初学数位DP完全搞不懂.很多时候都是自己花大量时间去找规律.记得上次网络赛有道数位DP.硬是找规律给A了.那时候完全不知数 ...

  6. POJ-2282题解&数位DP总结

    一.题意 给定一个区间[a, b](注意输入的时候可能a > b,所以,在数据输入后,要先比较a和b,如果a > b,交换a和b的值),统计这个区间里面,数位上有多少个0.多少个1.--. ...

  7. luogu2657-Windy数题解--数位DP

    题目链接 https://www.luogu.org/problemnew/show/P2657 分析 第一道数位DP题,发现有点意思 DP求\([L,R]\)区间内的XXX个数,很套路地想到前缀和, ...

  8. 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP

    题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...

  9. 洛谷P3413 SAC#1 - 萌数 题解 数位DP

    题目链接:https://www.luogu.com.cn/problem/P3413 题目大意: 定义萌数指:满足"存在长度至少为2的回文子串"的数. 求区间 \([L,R]\) ...

随机推荐

  1. oracle函数 CHR(n1)

    [功能]:将ASCII 码转换为字符. [参数]:n1,为0 ~ 255,整数 [返回]:字符型 [示例] SQL> select chr(54740) zhao,chr(65) chr65 f ...

  2. 模板—点分治A(容斥)(洛谷P2634 [国家集训队]聪聪可可)

    洛谷P2634 [国家集训队]聪聪可可 静态点分治 一开始还以为要把分治树建出来……• 树的结构不发生改变,点权边权都不变,那么我们利用刚刚的思路,有两种具体的分治方法.• A:朴素做法,直接找重心, ...

  3. 2018-8-10-WPF-如何在绑定失败异常

    title author date CreateTime categories WPF 如何在绑定失败异常 lindexi 2018-08-10 19:16:53 +0800 2018-05-17 1 ...

  4. Oracle/PLSQL存储过程详解

    原文链接:https://blog.csdn.net/zezezuiaiya/article/details/79557621 Oracle/PLSQL存储过程详解 2018-03-14 17:31: ...

  5. 提高github下载速度的方法【100%有效】可达到2MB/s

    因为大家都知道的原因,在国内从github上面下载代码的速度峰值通常都是20kB/s.这种速度对于那些小项目还好,而对于大一些的并且带有很多子模块的项目来讲就跟耽误时间.而常见的的方法无非就是修改HO ...

  6. H3C ISDN DCC基本配置示例

  7. SuperSocket命令加载器 (Command Loader)

    在某些情况下,你可能希望通过直接的方式来加载命令,而不是通过自动的反射. 如果是这样,你可以实现你自己的命令加载器 (Command Loader): public interface IComman ...

  8. java代码注释:单行//,多行/* */,文档注释/** */

    1.单行注释      //: //后到本行结束的所有字符会被编译器忽略; 2.多行注释     /* */: /*  */之间的所有字符会被编译器忽略 3.文档注释     /** */: 在/** ...

  9. 安装 NodeJ Koa2、3 + 独立插件 cli脚手架 npm cnpm Vue

    安装  NodeJ  npm  cnpm   Koa2.3 + 独立插件  cli脚手架    Vue 安装 在 这里写过了  这两个分开了写  Nodej:下载 node.js  安装  10.0版 ...

  10. UVA 11107 Life Forms——(多字符串的最长公共子序列,后缀数组+LCP)

    题意: 输入n个序列,求出一个最大长度的字符串,使得它在超过一半的DNA序列中连续出现.如果有多解,按照字典序从小到大输出所有解. 分析:这道题的关键是将多个字符串连接成一个串,方法是用不同的分隔符把 ...