Mobius反演定理-BZOJ2154
This article is made by Jason-Cow.
Welcome to reprint.
But please post the article's address.
莫比乌斯定理(未完待续......):
形式1:
形式2:
引理:
证明1:
右边=带入左边等式,得
又
当且仅当 :
,即
时,上式非
所以,成立。
bzoj2154
时间复杂度
换元:令
/*
*/
此题的精髓就一个字,模
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <map>
#include <set>
using namespace std;
#define file(x) freopen(x".in","r",stdin),freopen(x".out","w",stdout) const int mod=,maxn=1e7+;
int f[maxn],p[maxn],flag[maxn],cnt,S[maxn];
void init(int n,int m){
f[]=;
for(int i=;i<=n;i++) {
if(!flag[i])p[++cnt]=i,f[i]=(-i)%mod;
for(int j=;j<=cnt && i*p[j]<=n;j++) {
flag[i*p[j]]=;
if(i%p[j]==){f[i*p[j]]=f[i]%mod;break;}
f[i*p[j]]=((long long)(f[i]%mod)*(f[p[j]]%mod))%mod;
}
}
for(int i=;i<=m;i++)S[i]=((S[i]%mod)+((S[i-]+i)%mod))%mod;
} int main(){
int n,m;scanf("%d%d",&n,&m);if(n>m)swap(n,m);
init(n,m);
int ans=;
for(int Q=;Q<=n;Q++)
ans=(ans+(((Q%mod)*(long long)f[Q]*(((long long)S[n/Q]*S[m/Q])%mod))%mod)%mod)%mod;
printf("%d\n",(ans+mod)%mod);
return ;
}
Mobius反演定理-BZOJ2154的更多相关文章
- Bzoj-2301 [HAOI2011]Problem b 容斥原理,Mobius反演,分块
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 题意:多次询问,求有多少对数满足 gcd(x,y)=k, a<=x<=b ...
- Mobius反演学习
这篇文章参考了许多资料和自己的理解. 先放理论基础. 最大公约数:小学学过,这里只提一些重要的公式: $·$若$a=b$,则$\gcd(a,b)=a=b$: $·$若$\gcd(a,b)=d$,则$\ ...
- YY的GCD
YY的GCD 给出T个询问,询问\(\sum_{i=1}^N\sum_{j=1}^M(gcd(i,j)\in prime)\),T = 10000,N, M <= 10000000. 解 显然质 ...
- Crash的数字表格
Crash的数字表格 求\(\sum_{i=1}^N\sum_{j=1}^Mlcm(i,j)\) 解 设\(N<M\),显然有 \[\sum_{i=1}^N\sum_{j=1}^M\frac{i ...
- Longge's problem
Longge's problem 求\(\sum_{i=1}^ngcd(i,n)\),\(n< 2^{31}\). 解 理解1: 注意式子的实际意义,显然答案只可能在n的约数中,而现在问题变成了 ...
- Sky Code
Sky Code 给出n个数,求选出4个数组合,使其gcd为1,,\(n<=10000\),每个数\(<=10000\). 解 理解1:容斥原理 注意到Mobius反演式子不好写出,于是我 ...
- LJJ爱数数
LJJ爱数数 求\(\sum_{i=1}^n\sum_{j=1}^n\sum_{k=1}^n\epsilon(gcd(i,j,k))(\frac{1}{i}+\frac{1}{j}==\frac{1} ...
- [bzoj2154]Crash的数字表格(mobius反演)
题意:$\sum\limits_{i = 1}^n {\sum\limits_{j = 1}^m {lcm(i,j)} } $ 解题关键: $\sum\limits_{i = 1}^n {\sum\l ...
- SPOJ-7001 VLATTICE 莫比乌斯反演定理
题目链接:http://www.spoj.com/problems/VLATTICE/ 题意:求gcd(x,y,z)=1,1<=x,y,z<=n,的个数. 开始做的时候枚举gcd(x,y) ...
随机推荐
- mysql 视图 触发器 存储过程 函数事务 索引
mysql 视图 触发器 存储过程 函数事务 索引 视图 视图是一个虚拟表(非真实存在),其本质是[根据SQL语句获取动态的数据集,并为其命名],用户使用时只需使用[名称]即可获取结果集,并可以将其当 ...
- Ubuntu 打不开终端 侧边栏消失的解决办法
在网上找了很多办法,大多不行,具体原因也不太清楚,应该是Unity某些配置被改了. 我是在ubuntu14.04平台利用apt-get卸载python后,关机重启出现"打不开终端和侧边栏消失 ...
- 洛谷P1765 手机_NOI导刊2010普及(10) 关于cin和getline的一些区别 以及一些STL
一. cin>>s:cin>>是由两部分构成的,cin和>>,其中cin是输入流istream类的一个对象,隶属于iostream函数库而>>则是运算符 ...
- ALSA lib-ext plugin
参考pcm_speex.c #include <stdio.h> #include <string.h> #include <unistd.h> #include ...
- Redis 数据总结 (2.命令实现逻辑)
1.通过合理的Redis数据分布,实现逻辑的简化,即将部分逻辑纳入redis 连个sort表的合并,相关的资料见 http://www.redis.net.cn/order/3613.html ZIN ...
- python中的replace无法替换字符串
replace替换字符串的时候,需要重新赋值给变量,因为在python中字符串是不可变对象,因此在使用的时候我们必须重新赋值,就这么简单. z1=z1.replace('ddd','') 返回 ...
- Zookeeper学习笔记一
目录 一.zookeeper介绍 二.Zookeeper安装 一.zookeeper介绍 1.概述 Zookeeper是一个开源的分布式的,为分布式应用提供协调服务的Apache项目.Hadoop ...
- HDU1241 Oil Deposits(dfs+连通块问题)
背景描述 ztw同志负责探测地下石油储藏.ztw现在在一块矩形区域探测石油.他通过专业设备,来分析每个小块中是否蕴藏石油.如果这些蕴藏石油的小方格相邻(横向相邻,纵向相邻,还有对角相邻),那么它们被认 ...
- HttpModule介绍
https://cloud.tencent.com/developer/article/1347498 引言 Http 请求处理流程 和 Http Handler 介绍 这两篇文章里,我们首先了解了H ...
- C++-POJ2975-Nim
题目把Nim游戏为什么可以取异或和讲解得十分清楚,建议多读几次,理解一下 再一个,可以把每次异或视为一次取数,因此(k[i]^sg)<k[i]即为一种可行操作 /* Nim is a 2-pla ...