【二叉搜索树】的详细实现(C++)
二叉搜索树的概念
二叉搜索树的建立
//构造BST
BST(T value) :root(NULL), RefValue(value)
{
T x;
cin >> x;
while (x != RefValue)
{
Insert(x, root); //新建一个结点,调用Insert插入到树中
cin >> x;
}
}
二叉搜索树的插入
//以ptr为根的二叉搜索树中插入所含值为e1的结点
bool Insert(const T& e1, BSTNode<T>* &ptr) //第二个参数是指针的引用
{
if (ptr == NULL)
{
ptr = new BSTNode<T>(e1); //构造新结点
if (ptr == NULL)
{
cout << "Memory allocation failed!" << endl;
exit();
}
return true;
}
else if (e1 < ptr->data) //小于,插入左子树
{
Insert(e1, ptr->left);
}
else if (e1 > ptr->data) //大于,插入右子树
{
Insert(e1, ptr->right);
}
else //x已在树中,不插入
{
return false;
}
}
二叉搜索树的递归搜索
//在ptr为根的二叉搜索树中搜索含x的结点。若找到,返回该结点地址,否则返回NULL
BSTNode<T>* Search(T x, BSTNode<T>* ptr)
{
if (ptr == NULL)
{
return NULL;
}
else if (x < ptr->data)
{
return Search(x, ptr->left);
}
else if (x > ptr->data)
{
return Search(x, ptr->right);
}
else
{
return ptr;
}
}
二叉搜索树的删除

//以ptr为根的二叉搜索树中删除含x的结点
bool Remove(T x, BSTNode<T>* &ptr)
{
BSTNode<T>* temp;
if (ptr != NULL) //ptr不为空进行操作
{
if (x < ptr->data)
{
Remove(x, ptr->left);
}
else if (x > ptr->data)
{
Remove(x, ptr->right);
}
//找到了要删除的结点
//1.要删除的结点ptr同时有左右子树
else if (ptr->left != NULL&&ptr->right != NULL)
{
temp = ptr->right; //在右子树中搜索中序下的第一个结点
while (temp->left != NULL)
{
temp = temp->left;
}
//用右子树中序下的第一个结点的值填充要删除的结点
ptr->data = temp->data;
//然后再新填充值ptr的右子树中删除temp的data值
Remove(ptr->data, ptr->right);
}
else //不同时有左右子树
{
temp = ptr; //temp记住要删除的ptr结点
if (ptr->left == NULL) //只有右子树
{
ptr = ptr->right;
}
else //只有左子树
{
ptr = ptr->left;
}
delete temp; //删除结点
temp = NULL;
return true;
}
}
else //ptr为空直接返回false
{
return false;
}
}
二叉搜索树的销毁
//销毁以root为根的二叉树搜索树函数
void Destroy(BSTNode<T>* &root)
{
if (root == NULL)
{
return;
}
if (root->left != NULL)
{
Destroy(root->left);
}
if (root->right != NULL)
{
Destroy(root->right);
}
delete root;
root = NULL;
}
二叉搜索树的源码
//二叉搜索树结点类型
template<typename T>
struct BSTNode
{
T data; //数据域
BSTNode<T> *left, *right; //左子女、右子女
BSTNode() :left(NULL), right(NULL) {} //构造函数
//构造函数
BSTNode(const T d, BSTNode<T>* L = NULL, BSTNode<T>* R = NULL) :data(d), left(L), right(R) {}
}; //二叉搜索树的定义
template <class T>
class BST
{
public:
//普通构造函数
BST() :root(NULL) {}
//构造BST
BST(T value) :root(NULL), RefValue(value)
{
T x;
cin >> x;
while (x != RefValue)
{
Insert(x, root); //新建一个结点,调用Insert插入到树中
cin >> x;
}
}
//析构
~BST() { Destroy(root); } //插入
bool Insert(T x) { return Insert(x, root); } //删除
bool Remove(T x) { return Remove(x, root); } //搜索
bool Search(T x) { return (Search(x, root) != NULL) ? true : false; } //中序遍历
void InOrder() { InOrder(root); } protected: //以ptr为根的二叉搜索树中插入所含值为e1的结点
bool Insert(const T& e1, BSTNode<T>* &ptr) //第二个参数是指针的引用
{
if (ptr == NULL)
{
ptr = new BSTNode<T>(e1); //构造新结点
if (ptr == NULL)
{
cout << "Memory allocation failed!" << endl;
exit();
}
return true;
}
else if (e1 < ptr->data) //小于,插入左子树
{
Insert(e1, ptr->left);
}
else if (e1 > ptr->data) //大于,插入右子树
{
Insert(e1, ptr->right);
}
else //x已在树中,不插入
{
return false;
}
} //以ptr为根的二叉搜索树中删除含x的结点
bool Remove(T x, BSTNode<T>* &ptr)
{
BSTNode<T>* temp;
if (ptr != NULL) //ptr不为空进行操作
{
if (x < ptr->data)
{
Remove(x, ptr->left);
}
else if (x > ptr->data)
{
Remove(x, ptr->right);
}
//找到了要删除的结点
//1.要删除的结点ptr同时有左右子树
else if (ptr->left != NULL&&ptr->right != NULL)
{
temp = ptr->right; //在右子树中搜索中序下的第一个结点
while (temp->left != NULL)
{
temp = temp->left;
}
//用右子树中序下的第一个结点的值填充要删除的结点
ptr->data = temp->data;
//然后再新填充值ptr的右子树中删除temp的data值
Remove(ptr->data, ptr->right);
}
else //不同时有左右子树
{
temp = ptr; //temp记住要删除的ptr结点
if (ptr->left == NULL) //只有右子树
{
ptr = ptr->right;
}
else //只有左子树
{
ptr = ptr->left;
}
delete temp; //删除结点
temp = NULL;
return true;
}
}
else //ptr为空直接返回false
{
return false;
}
} //在ptr为根的二叉搜索树中搜索含x的结点。若找到,返回该结点地址,否则返回NULL
BSTNode<T>* Search(T x, BSTNode<T>* ptr)
{
if (ptr == NULL)
{
return NULL;
}
else if (x < ptr->data)
{
return Search(x, ptr->left);
}
else if (x > ptr->data)
{
return Search(x, ptr->right);
}
else
{
return ptr;
}
} //中序遍历
void InOrder(BSTNode<T>* root)
{
if (root != NULL)
{
InOrder(root->left);
cout << root->data << " ";
InOrder(root->right);
}
} //销毁以root为根的二叉树搜索树函数
void Destroy(BSTNode<T>* &root)
{
if (root == NULL)
{
return;
}
if (root->left != NULL)
{
Destroy(root->left);
}
if (root->right != NULL)
{
Destroy(root->right);
}
delete root;
root = NULL;
}
private:
BSTNode<T>* root; //根指针
T RefValue; //输入结束标识
}; int main(int argc, char* argv[])
{
//g a e d f h j i l k #
BST<char> tree('#');
tree.InOrder();
cout << endl;
cout << tree.Search('e') << endl;
cout << tree.Insert('z') << endl;
tree.InOrder();
cout << endl;
cout << tree.Remove('z') << endl;
cout << tree.Remove('j') << endl;
tree.InOrder();
cout << endl;
return ;
}
源代码
【二叉搜索树】的详细实现(C++)的更多相关文章
- Interview----判断整数序列是否是二叉搜索树的后序遍历结果
题目:输入一个整数数组,判断该数组是不是某二元查找树的后序遍历的结果. 如果是返回true,否则返回false. 例如输入5.7.6.9.11.10.8,由于这一整数序列是如下树的后序遍历结果: ...
- 【算法与数据结构】二叉搜索树的Java实现
为了更加深入了解二叉搜索树,博主自己用Java写了个二叉搜索树,有兴趣的同学可以一起探讨探讨. 首先,二叉搜索树是啥?它有什么用呢? 二叉搜索树, 也称二叉排序树,它的每个节点的数据结构为1个父节点指 ...
- [CareerCup] 4.6 Find Next Node in a BST 寻找二叉搜索树中下一个节点
4.6 Write an algorithm to find the'next'node (i.e., in-order successor) of a given node in a binary ...
- 在二叉搜索树(BST)中查找第K个大的结点之非递归实现
一个被广泛使用的面试题: 给定一个二叉搜索树,请找出其中的第K个大的结点. PS:我第一次在面试的时候被问到这个问题而且让我直接在白纸上写的时候,直接蒙圈了,因为没有刷题准备,所以就会有伤害.(面完的 ...
- 二叉搜索树、AVL平衡二叉搜索树、红黑树、多路查找树
1.二叉搜索树 1.1定义 是一棵二叉树,每个节点一定大于等于其左子树中每一个节点,小于等于其右子树每一个节点 1.2插入节点 从根节点开始向下找到合适的位置插入成为叶子结点即可:在向下遍历时,如果要 ...
- 剑指offer二十六之二叉搜索树与双向链表
一.题目 输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表.要求不能创建任何新的结点,只能调整树中结点指针的指向. 二.思路 对二叉搜索树中序遍历的结果即为排序的结果,在中序遍历的过程中,建 ...
- 树-二叉搜索树-AVL树
树-二叉搜索树-AVL树 树 树的基本概念 节点的度:节点的儿子数 树的度:Max{节点的度} 节点的高度:节点到各叶节点的最大路径长度 树的高度:根节点的高度 节点的深度(层数):根节点到该节点的路 ...
- 「面试高频」二叉搜索树&双指针&贪心 算法题指北
本文将覆盖 「字符串处理」 + 「动态规划」 方面的面试算法题,文中我将给出: 面试中的题目 解题的思路 特定问题的技巧和注意事项 考察的知识点及其概念 详细的代码和解析 开始之前,我们先看下会有哪些 ...
- 95题--不同的二叉搜索树II(java、中等难度)
题目描述:给定一个整数 n,生成所有由 1 ... n 为节点所组成的 二叉搜索树 . 示例如下: 分析:这一题需要对比LeetCode96题来分析:https://www.cnblogs.com/K ...
随机推荐
- Mac上利用VScode配置c/c++开发环境
Mac上利用VScode配置c/c++开发环境 哭辽,Typora里面最好不要插入表情,不然保存会闪退 首先你要有一个vscode 在扩展里面下载c/c++ 第一步 ⬆+com+p 打开命令模式:选择 ...
- [Python]python对csv去除重复行 python 2020.2.11
用pandas库的.drop_duplicates函数 代码如下: import shutil import pandas as pd frame=pd.read_csv('E:/bdbk.csv', ...
- K3/Cloud 执行计划任务错误排查
计划任务的不执行原因可能有: 1.K3CloudJobProcess服务处于停止状态. 2.数据中心未勾选“允许执行计划任务”. 这种情况此数据中心下的所有计划任务都不会执行到. 3.第一次加进计划任 ...
- TAB_JG_COMMAND_SERVERINFO
简介 存储设备基本信息 表结构
- Oracle VM VirtualBox - VBOX_E_FILE_ERROR (0x80BB0004)
问题描述: 导入虚拟电脑 D:\LR\虚拟机相关\CentOS-6.7-x86_64-2G-40G-oracle-IP9\CentOS-6.7-x86_64-2G-40G-oracle-IP9.ovf ...
- 智能手机中下一次被消灭的部件是电话卡和TF卡
智能手机中下一次被消灭的部件是电话卡和TF卡. 侧滑实体键盘,实体拍照键,HDMI外接接口,实体切换双卡键,可拆卸后盖……这些都消亡了,被其更好的内在设计所取代.而电话卡和TF卡仍在使用.将来的智能手 ...
- SpringBoot学习- 8、整合Shiro
SpringBoot学习足迹 Shiro是什么,引自百度百科:Apache Shiro是一个强大且易用的Java安全框架,执行身份验证.授权.密码和会话管理.使用Shiro的易于理解的API,您可以快 ...
- JAVAWEB应用模块(一)登录模块
java后台代码(MD5加密+token验证): import com.smart.ssai.admin.domain.User; import com.smart.ssai.admin.servic ...
- mybatis(六):设计模式 - 策略模式
- SSIS 查找 组件
通过SSIS的“查找”组件进行不同数据源之间数据的合并操作 为了协助开发还原生产环境中的某些bug,需要将将生产环境的某些特定表数据导入到测试环境做测试,之前一直都是暴力地truncate测试环境的表 ...