2019 Multi-University Training Contest 6 Snowy Smile (最大字段和变形)
题意:
求一个子矩阵要求其矩阵内的合最大。
题解:
正常的求最大子矩阵的复杂度是O(n^3)
对于这一题说复杂度过不去,注意到这个题总共只有2000个点关键点在与这里优化
最大子矩阵可以压缩矩阵变成最大字段和问题
然后可以通过带修改的最大字段和维护这2000个点,复杂度就变成了了O(n^2logn)
将算出每一列的合的操作 用待修改的最大字段和的线段树维护。
#include <cstdio>
#include <cstring>
#include <queue>
#include <cmath>
#include <algorithm>
#include <set>
#include <iostream>
#include <map>
#include <stack>
#include <string>
#include <vector>
#define pi acos(-1.0)
#define eps 1e-9
#define fi first
#define se second
#define rtl rt<<1
#define rtr rt<<1|1
#define bug printf("******\n")
#define mem(a,b) memset(a,b,sizeof(a))
#define name2str(x) #x
#define fuck(x) cout<<#x" = "<<x<<endl
#define f(a) a*a
#define sf(n) scanf("%d", &n)
#define sff(a,b) scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define sffff(a,b,c,d) scanf("%d %d %d %d", &a, &b, &c, &d)
#define pf printf
#define FRE(i,a,b) for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b) for(i = a; i < b; i++)+
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define FIN freopen("data.txt","r",stdin)
#define gcd(a,b) __gcd(a,b)
#define lowbit(x) x&-x
#define rep(i,a,b) for(int i=a;i<b;++i)
#define per(i,a,b) for(int i=a-1;i>=b;--i)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const int maxn = + ;
const int maxm = 8e6 + ;
const int mod = 1e9 + ;
const int INF = 0x3f3f3f3f;
int T, n;
LL s[maxn], x[maxn], y[maxn], a[maxn], b[maxn], w[maxn], mp[maxn][maxn];
struct Segtree {
LL maxx, vl, vr, sum, fg; } Tree[maxn << ];
void updata ( int rt ) {
Tree[rt].maxx = max ( Tree[rtl].maxx, max ( Tree[rtr].maxx, Tree[rtl].vr + Tree[rtr].vl ) );
Tree[rt].sum = Tree[rtl].sum + Tree[rtr].sum;
Tree[rt].vl = max ( Tree[rtl].vl, Tree[rtl].sum + Tree[rtr].vl );
Tree[rt].vr = max ( Tree[rtr].vr, Tree[rtr].sum + Tree[rtl].vr );
}
void build ( int l, int r, int rt ) {
Tree[rt].fg = true;
if ( l == r ) {
Tree[rt].sum = s[l];
Tree[rt].maxx = s[l];
Tree[rt].vl = s[l];
Tree[rt].vr = s[l];
return ;
}
int mid = ( l + r ) >> ;
build ( l, mid, rtl );
build ( mid + , r, rtr );
updata ( rt );
}
void add ( int l, int r, int rt, int pos, int to ) {
if ( l > pos || r < pos ) return ;
if ( l == r ) {
Tree[rt].sum += to;
Tree[rt].maxx += to;
Tree[rt].vl += to;
Tree[rt].vr += to;
return ;
}
int mid = ( l + r ) >> ;
add ( l, mid, rtl, pos, to );
add ( mid + , r, rtr, pos, to );
updata ( rt );
}
Segtree query ( int l, int r, int rt, int sa, int se ) {
if ( sa <= l && r <= se ) return Tree[rt];
int mid = ( l + r ) >> ;
if ( sa > mid ) return query ( mid + , r, rtr, sa, se );
if ( se <= mid ) return query ( l, mid, rtl, sa, se );
Segtree t, lson, rson;
lson = query ( l, mid, rtl, sa, se );
rson = query ( mid + , r, rtr, sa, se );
t.vl = max ( lson.vl, lson.sum + rson.vl );
t.vr = max ( rson.vr, lson.vr + rson.sum );
t.maxx = max ( lson.vr + rson.vl, max ( lson.maxx, rson.maxx ) );
return t;
}
vector<LL>v[maxn];
int main() {
// FIN;
sf ( T );
while ( T-- ) {
sf ( n );
for ( int i = ; i <= n ; i++ ) {
scanf ( "%lld%lld%lld", &x[i], &y[i], &w[i] );
a[i] = x[i], b[i] = y[i];
v[i].clear();
}
sort ( a + , a + + n ), sort ( b + , b + + n );
int len1 = unique ( a + , a + + n ) - a - ;
int len2 = unique ( b + , b + + n ) - b - ;
for ( int i = ; i <= n ; i++ ) for ( int j = ; j <= n ; j++ ) mp[i][j] = ;
for ( int i = ; i <= n ; i++ ) {
x[i] = lower_bound ( a + , a + + len1, x[i] ) - a;
y[i] = lower_bound ( b + , b + + len2, y[i] ) - b;
mp[y[i]][x[i]] += w[i];
}
for ( int i = ; i <= n ; i++ )
for ( int j = ; j <= n ; j++ )
if ( mp[i][j] ) v[i].push_back ( j );
LL ans = ;
for ( int i = ; i <= n ; i++ ) {
for ( int j = ; j <= n ; j++ ) s[j] = mp[i][j];
build ( , n, );
ans = max ( ans, query ( , n, , , n ).maxx );
for ( int j = i + ; j <= n ; j++ ) {
for ( int k = ; k < v[j].size() ; k++ ) {
add ( , n, , v[j][k], mp[j][v[j][k]] );
}
ans = max ( ans, query ( , n, , , n ).maxx );
}
}
printf ( "%lld\n", ans );
}
return ;
}
2019 Multi-University Training Contest 6 Snowy Smile (最大字段和变形)的更多相关文章
- 2019 Nowcoder Multi-University Training Contest 4 E Explorer
		
线段树分治. 把size看成时间,相当于时间 $l$ 加入这条边,时间 $r+1$ 删除这条边. 注意把左右端点的关系. #include <bits/stdc++.h> ; int X[ ...
 - 2019 Nowcoder Multi-University Training Contest 1 H-XOR
		
由于每个元素贡献是线性的,那么等价于求每个元素出现在多少个异或和为$0$的子集内.因为是任意元素可以去异或,那么自然想到线性基.先对整个集合A求一遍线性基,设为$R$,假设$R$中元素个数为$r$,那 ...
 - HDU校赛 | 2019 Multi-University Training Contest 6
		
2019 Multi-University Training Contest 6 http://acm.hdu.edu.cn/contests/contest_show.php?cid=853 100 ...
 - 2019 Multi-University Training Contest 8
		
2019 Multi-University Training Contest 8 C. Acesrc and Good Numbers 题意 \(f(d,n)\) 表示 1 到 n 中,d 出现的次数 ...
 - 2019 Multi-University Training Contest 7
		
2019 Multi-University Training Contest 7 A. A + B = C 题意 给出 \(a,b,c\) 解方程 \(a10^x+b10^y=c10^z\). tri ...
 - 2019 Multi-University Training Contest 1
		
2019 Multi-University Training Contest 1 A. Blank upsolved by F0_0H 题意 给序列染色,使得 \([l_i,r_i]\) 区间内恰出现 ...
 - 2019 Multi-University Training Contest 2
		
2019 Multi-University Training Contest 2 A. Another Chess Problem B. Beauty Of Unimodal Sequence 题意 ...
 - 2019 Multi-University Training Contest 5
		
2019 Multi-University Training Contest 5 A. fraction upsolved 题意 输入 \(x,p\),输出最小的 \(b\) 使得 \(bx\%p&l ...
 - HDU校赛 | 2019 Multi-University Training Contest 5
		
2019 Multi-University Training Contest 5 http://acm.hdu.edu.cn/contests/contest_show.php?cid=852 100 ...
 
随机推荐
- Go 算术运算符
			
Go 算术运算符 package main import "fmt" func main() { var a int = 21 var b int = 10 var c int c ...
 - csp-s模拟测试92
			
csp-s模拟测试92 关于$T1$:最短路这一定建边最短路. 关于$T2$:傻逼$Dp$这一定线段树优化$Dp$. 关于$T3$:最小生成树+树P+换跟一定是这样. 深入(?)思考$T1$:我是傻逼 ...
 - JavaScript笔记 - Object对象特性的应用
			
可以依据js对象中key是永远不会重复的原则,来模拟Map类型以及去除数组重复项. 1.模拟Map类型 (1)构造Map对象 function Map(){ //private var obj = { ...
 - 20140425 malloc和new不同 dynamic何时返回0
			
1.malloc/free和new/delete区别 http://blog.csdn.net/hackbuteer1/article/details/6789164 相同点:都可用于申请动态内存和释 ...
 - python批量运行py文件
			
import os path="E:\\python" #批量的py文件路径 for root,dirs,files in os.walk(path): #进入文件夹目录 for ...
 - <读书笔记>001-以解决问题为导向的python编程实践
			
以解决问题为导向的python编程实践 0.第0章:计算机科学 思考:计算机科学是否为计算机编程的简称? 编程的困难点:1.同时做2件事(编程语言的语法.语义+利用其解决问题) 2.什么是好程序(解 ...
 - HttpWebRequest 基础连接已经关闭: 接收时发生错误 GetRequestStream  因为算法不同,客户端和服务器无法通信。
			
在代码行 HttpWebRequest objRequest = (HttpWebRequest)HttpWebRequest.Create(sUrl 前面加上 ServicePointManager ...
 - iOS开发系列-常见离线存储方式
			
概述 在很多社交App手机在手机没有网络时,重新启动应用,依然能否展示上次访问的数据,提高用户体验,这个就是离线数据存储的运用场景.在iOS开发中常见的离线存储技术有Plist存储.个人偏好存储.解归 ...
 - c# 使用Expression 生成sql
			
使用Expression 生成sql update语句的时候遇到了个问题 ,Expression<Action<T>> la 这个委托里面老获取不到 引用类型的值,甚至 ...
 - centos lamp笔记
			
cron and crontab are missing in docker image of ubuntu 16.04 在鏡像中沒有 cron 命令 How to install php-redis ...