题意:

求一个子矩阵要求其矩阵内的合最大。

题解:

正常的求最大子矩阵的复杂度是O(n^3)

对于这一题说复杂度过不去,注意到这个题总共只有2000个点关键点在与这里优化

最大子矩阵可以压缩矩阵变成最大字段和问题

然后可以通过带修改的最大字段和维护这2000个点,复杂度就变成了了O(n^2logn)

将算出每一列的合的操作 用待修改的最大字段和的线段树维护。

 #include <cstdio>
#include <cstring>
#include <queue>
#include <cmath>
#include <algorithm>
#include <set>
#include <iostream>
#include <map>
#include <stack>
#include <string>
#include <vector>
#define pi acos(-1.0)
#define eps 1e-9
#define fi first
#define se second
#define rtl rt<<1
#define rtr rt<<1|1
#define bug printf("******\n")
#define mem(a,b) memset(a,b,sizeof(a))
#define name2str(x) #x
#define fuck(x) cout<<#x" = "<<x<<endl
#define f(a) a*a
#define sf(n) scanf("%d", &n)
#define sff(a,b) scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define sffff(a,b,c,d) scanf("%d %d %d %d", &a, &b, &c, &d)
#define pf printf
#define FRE(i,a,b) for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b) for(i = a; i < b; i++)+
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define FIN freopen("data.txt","r",stdin)
#define gcd(a,b) __gcd(a,b)
#define lowbit(x) x&-x
#define rep(i,a,b) for(int i=a;i<b;++i)
#define per(i,a,b) for(int i=a-1;i>=b;--i)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const int maxn = + ;
const int maxm = 8e6 + ;
const int mod = 1e9 + ;
const int INF = 0x3f3f3f3f;
int T, n;
LL s[maxn], x[maxn], y[maxn], a[maxn], b[maxn], w[maxn], mp[maxn][maxn];
struct Segtree {
LL maxx, vl, vr, sum, fg; } Tree[maxn << ];
void updata ( int rt ) {
Tree[rt].maxx = max ( Tree[rtl].maxx, max ( Tree[rtr].maxx, Tree[rtl].vr + Tree[rtr].vl ) );
Tree[rt].sum = Tree[rtl].sum + Tree[rtr].sum;
Tree[rt].vl = max ( Tree[rtl].vl, Tree[rtl].sum + Tree[rtr].vl );
Tree[rt].vr = max ( Tree[rtr].vr, Tree[rtr].sum + Tree[rtl].vr );
}
void build ( int l, int r, int rt ) {
Tree[rt].fg = true;
if ( l == r ) {
Tree[rt].sum = s[l];
Tree[rt].maxx = s[l];
Tree[rt].vl = s[l];
Tree[rt].vr = s[l];
return ;
}
int mid = ( l + r ) >> ;
build ( l, mid, rtl );
build ( mid + , r, rtr );
updata ( rt );
}
void add ( int l, int r, int rt, int pos, int to ) {
if ( l > pos || r < pos ) return ;
if ( l == r ) {
Tree[rt].sum += to;
Tree[rt].maxx += to;
Tree[rt].vl += to;
Tree[rt].vr += to;
return ;
}
int mid = ( l + r ) >> ;
add ( l, mid, rtl, pos, to );
add ( mid + , r, rtr, pos, to );
updata ( rt );
}
Segtree query ( int l, int r, int rt, int sa, int se ) {
if ( sa <= l && r <= se ) return Tree[rt];
int mid = ( l + r ) >> ;
if ( sa > mid ) return query ( mid + , r, rtr, sa, se );
if ( se <= mid ) return query ( l, mid, rtl, sa, se );
Segtree t, lson, rson;
lson = query ( l, mid, rtl, sa, se );
rson = query ( mid + , r, rtr, sa, se );
t.vl = max ( lson.vl, lson.sum + rson.vl );
t.vr = max ( rson.vr, lson.vr + rson.sum );
t.maxx = max ( lson.vr + rson.vl, max ( lson.maxx, rson.maxx ) );
return t;
}
vector<LL>v[maxn];
int main() {
// FIN;
sf ( T );
while ( T-- ) {
sf ( n );
for ( int i = ; i <= n ; i++ ) {
scanf ( "%lld%lld%lld", &x[i], &y[i], &w[i] );
a[i] = x[i], b[i] = y[i];
v[i].clear();
}
sort ( a + , a + + n ), sort ( b + , b + + n );
int len1 = unique ( a + , a + + n ) - a - ;
int len2 = unique ( b + , b + + n ) - b - ;
for ( int i = ; i <= n ; i++ ) for ( int j = ; j <= n ; j++ ) mp[i][j] = ;
for ( int i = ; i <= n ; i++ ) {
x[i] = lower_bound ( a + , a + + len1, x[i] ) - a;
y[i] = lower_bound ( b + , b + + len2, y[i] ) - b;
mp[y[i]][x[i]] += w[i];
}
for ( int i = ; i <= n ; i++ )
for ( int j = ; j <= n ; j++ )
if ( mp[i][j] ) v[i].push_back ( j );
LL ans = ;
for ( int i = ; i <= n ; i++ ) {
for ( int j = ; j <= n ; j++ ) s[j] = mp[i][j];
build ( , n, );
ans = max ( ans, query ( , n, , , n ).maxx );
for ( int j = i + ; j <= n ; j++ ) {
for ( int k = ; k < v[j].size() ; k++ ) {
add ( , n, , v[j][k], mp[j][v[j][k]] );
}
ans = max ( ans, query ( , n, , , n ).maxx );
}
}
printf ( "%lld\n", ans );
}
return ;
}

2019 Multi-University Training Contest 6 Snowy Smile (最大字段和变形)的更多相关文章

  1. 2019 Nowcoder Multi-University Training Contest 4 E Explorer

    线段树分治. 把size看成时间,相当于时间 $l$ 加入这条边,时间 $r+1$ 删除这条边. 注意把左右端点的关系. #include <bits/stdc++.h> ; int X[ ...

  2. 2019 Nowcoder Multi-University Training Contest 1 H-XOR

    由于每个元素贡献是线性的,那么等价于求每个元素出现在多少个异或和为$0$的子集内.因为是任意元素可以去异或,那么自然想到线性基.先对整个集合A求一遍线性基,设为$R$,假设$R$中元素个数为$r$,那 ...

  3. HDU校赛 | 2019 Multi-University Training Contest 6

    2019 Multi-University Training Contest 6 http://acm.hdu.edu.cn/contests/contest_show.php?cid=853 100 ...

  4. 2019 Multi-University Training Contest 8

    2019 Multi-University Training Contest 8 C. Acesrc and Good Numbers 题意 \(f(d,n)\) 表示 1 到 n 中,d 出现的次数 ...

  5. 2019 Multi-University Training Contest 7

    2019 Multi-University Training Contest 7 A. A + B = C 题意 给出 \(a,b,c\) 解方程 \(a10^x+b10^y=c10^z\). tri ...

  6. 2019 Multi-University Training Contest 1

    2019 Multi-University Training Contest 1 A. Blank upsolved by F0_0H 题意 给序列染色,使得 \([l_i,r_i]\) 区间内恰出现 ...

  7. 2019 Multi-University Training Contest 2

    2019 Multi-University Training Contest 2 A. Another Chess Problem B. Beauty Of Unimodal Sequence 题意 ...

  8. 2019 Multi-University Training Contest 5

    2019 Multi-University Training Contest 5 A. fraction upsolved 题意 输入 \(x,p\),输出最小的 \(b\) 使得 \(bx\%p&l ...

  9. HDU校赛 | 2019 Multi-University Training Contest 5

    2019 Multi-University Training Contest 5 http://acm.hdu.edu.cn/contests/contest_show.php?cid=852 100 ...

随机推荐

  1. NX二次开发-UFUN工程图表格注释设置单元格首选项UF_TABNOT_set_cell_prefs

    NX9+VS2012 #include <uf.h> #include <uf_tabnot.h> #include <NXOpen/Part.hxx> #incl ...

  2. NX二次开发-NXOpen中Point3d类型转换成point类型

    NX9+VS2012 #include <NXOpen/NXObject.hxx> #include <NXOpen/Part.hxx> #include <NXOpen ...

  3. 【latex】latex基础

    文档边距.间距调整 边距调整 \usepackage{geometry} %设置页边距的宏包 \geometry{left=3.0cm,right=2.5cm,top=2.5cm,bottom=2.5 ...

  4. (转)OC学习笔记 @property的属性 strong 和 weak 理解

    在ObjectiveC里,用@property访问所有的实例变量.@property有一对属性:strong 和 weak.官方文档里的解释晦涩难懂:Stack Overflow里的用户RDC (ht ...

  5. Python对象继承set类型

    Python对象继承set类型 class Feature(set): def __init__(self): set.__init__(self) # 这里演示将Feature类的加号重载成set. ...

  6. SPSS数据记录的选择(Select Cases)

    SPSS数据记录的选择(Select Cases) 在数据分析时,有时可能只对某些记录感兴趣.例如,在判别分析时,可能用其中90%的记录数据建立判别函数,用其余10%的记录来考核判别函数.此时,可以通 ...

  7. SpringMVC(day1搭建SpringWebMvc项目)

    MVC和webMVC的区别 Model(模型) 数据模型,提供要展示的数据,因此包含数据和行为,行为是用来处理这些数据的.不过现在一般都分离开来:Value Object(数据) 和 服务层(行为). ...

  8. 安装mysql时,服务无法启动的问题

    1.下载mysql镜像文件:mysql-installer-community-8.0.17.0.msi 2.点击镜像进行安装,一直next即可 3.cmd以管理员身份,进入到安装的mysql安装目录 ...

  9. 005-Java运算符

    1.  求余符号,余数的符号是和被除数保持一致的. 2. 自增自减运算符不改变变量的数据类型. 逻辑运算符 逻辑与:& 逻辑或:| 逻辑非:! 短路与:&& 短路或:|| 逻辑 ...

  10. C++ vector操作--往列表中添加或更新内容

    有个列表,往里面添加内容,如果对象已存在,只更新其属性,否则添加新一项. #include <iostream> #include <string> #include < ...